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Abstract 

Until recently, measurements of the orthopositronium decay rate disagreed with the value predicted by 

quantum electrodynamics.  This paper describes a novel attempt to measure this decay rate.  Positrons 

from the decay of 22Na were slowed in a vacuum chamber containing a sample of aerogel.  The release 

of a positron by the 22Na source was signalled by the detection of a 1.27 MeV gamma ray by a plastic 

scintillation detector.  Orthopositronium typically decays into three gamma rays, which were detected 

by three NaI detectors.  By detecting the annihilation gamma rays in coincidence and using energy 

information from the events, systematic effects due to contamination by parapositronium decay, which 

plagued previous measurements, may be reduced.  Preliminary analysis of data taken over 200 hours 

has yielded a value for the decay rate of 7.83±0.5 μs-1.  Currently, problems with Compton scattering 

are preventing the use of the energy information in analysis.  Possible solutions to this problem will be 

discussed. 

Thesis Supervisor:  Dr. Mark Yuly 
Title:  Professor of Physics 
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Chapter 1 
 

INTRODUCTION AND POSITRONIUM THEORY 

 
1.1 History of Positronium 

Positrons were first predicted by Dirac [1], using his theory of the spinor field. He initially believed 

that his theory had predicted protons, despite the prediction that the mass should be the same as that 

of the electron.  The theory required that positrons should exist to preserve causality.  The 

experimental discovery of positrons was made by Anderson [2] in 1932, when measurements of 

particle tracks through a magnetic field indicated positively charged particles with a very low mass, as 

would be expected from Dirac’s theory.  This confirmed Dirac’s prediction of a heretofore unknown 

form of matter.  The positron has the same mass as the electron (511 keV/c2), and the same spin of ½, 

but the opposite electrical charge, that is +e, while the electron has the electrical charge -e.  Electrons 

and positrons may annihilate, producing gamma rays.  

Positronium, the bound state of one positron and one electron, was the first “exotic atom” to be 

discovered.  The discovery was made in 1951 by Deutsch [3].  Deutsch measured the distribution of 

decay times between the emission of a positron from a 22Na source and the detection of the 

annihilation gamma rays from positronium formed in N gas.  It was discovered that there was a decay 

curve component inversely proportional to pressure, as would be expected if the positrons were 

annihilating with atomic electrons.  However, there was also a decay curve which was primarily 

independent of pressure, which was the positronium.  Once electrons and positrons bind, their decay 

rate is independent of pressure, unless the pressure is high enough that there would be many collisions 

with atoms before the positronium decayed.   

 Positronium can be found in two spin states.  The state with total spin s=0 is known as 

parapositronium.  The state with s=1 is known as orthopositronium.  Parapositronium decays very 
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rapidly, with a measured decay rate of approximately 8 ns-1 [4], while orthopositronium has a decay rate 

closer to 7 μs-1.  This time delay is easily measurable with current technology, which combined with the 

fact that positronium involves only electromagnetic interactions, makes measurements of the decay 

rate of orthopositronium a good testing ground for Quantum Electrodynamics (QED).  The gamma 

ray spectrum of the orthopositronium decay has been measured and the distribution of the energies of 

the gamma rays has been confirmed to be in agreement with the phase space predictions [5].  The 

energy levels of the positronium atoms have also been investigated [6]. 

1.2 The Orthopositronium Decay Rate Problem 

Although QED saw a great deal of success after the work of Feynman [7], Schwinger [8], and 

Tomonaga [9], its prediction of the decay rate of orthopositronium, initially made using perturbation 

theory in QED to first order in α by Ore and Powell [10], was not in agreement with the 

experimentally measured value.  The calculation by Ore and Powell gave a decay rate of 7.14 μs-1. 

However, the experimental results yielded higher results than the theoretical predictions, by as much as 

9.4 standard deviations [11].  Table 1 shows some of the previous experimental results.  

The current best theoretical prediction [12] of the vacuum decay rate is 7.039934±0.000010 μs-1, using 

perturbation theory in QED to second order in α, while the experimental results have generally been 

somewhat higher than this.  The first modern experiment by Gidley et al [13] in 1975 formed 

positronium in a low density SiO2 powder, and measured the annihilation gamma rays using three NaI 

scintillator detectors.  The decay rate was measured at varying pressures and the vacuum decay rate 

was given by extrapolating to zero density.  The 1976 measurement by Gidley et al [14] was made by 

forming positronium in an evacuated chamber coated with MgO, to enable the measurement to be 

made directly in a vacuum.  The 1982 measurement by Gidley et al [15] used isobutane gas for 

positronium formation, along with a magnetic field, which increased the path length allowing for more 

positronium to form.  The magnetic field caused a fine-splitting of the states, which was accounted for 

in analysis.  The 1989 measurement by Westbrook et al [16] used various gasses, including N, Ne, 

isobutane, and a mixture of the three, to form the positronium, and then extrapolated to zero pressure.  
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In 1990 Nico et al [17] used evacuated MgO cavities, similar to the 1976 experiment, of varying volume 

and then extrapolated to infinite cavity size for their measurement. 

Table 1.  Previous experimental results.  Notice that there has been an 
increase in the precision of the experiments, and that newer techniques 
have given values closer to the QED prediction. 

GROUP YEAR METHOD RESULT REFERENCE 

Gidley et al 1975 SiO2 powder 7.104±0.006 μs-1 13 

Gidley et al 1976 MgO coated chamber 7.09±0.02 μs-1 14 

Gidley et al 1982 Isobutane gas 7.051±0.005 μs-1 15 

Westbrook et al 1989 N, Ne, and isobutane gas 7.0514±0.0014 μs-1 16 

Nico et al 1990 MgO coated cavities 7.0482±0.0016 μs-1 17 

Asai et al 1995 SiO2 powder 7.0398±0.004 μs-1 18 

Vallery et al 2003 Silica film 7.0404±0.0018 μs-1 19 

Asai et al 2004 SiO2 powder 7.0396±0.0023 μs-1 20 

 

All these experiments found values with which Quantum Electrodynamics disagreed.  The 

disagreement was suspected by some to indicate that there must be a large correction from the second 

order in α terms in QED perturbation theory, but this did not turn out to be the case [19].  This led to 

speculation that there might be new physics present.  There have been searches for decays into neutral 

bosons [21], neutrinos [22], two photons [23], photons plus neutral particles [24], four photons [25], 

photons and vector bosons [26], and other exotic three body decays [27].  The only result of these 

experiments was to place severe upper bounds upon the number of orthopositronium atoms which 

decay via these channels.   

Beginning in 1995, however, several experiments have been done for which the theoretical prediction 

and the measured value agree.  In 1995 Asai et al [18] measured the decay rate of orthopositronium in 

an SiO2 powder.  By using a high-efficiency germanium detector, they were able to eliminate most of 
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the effects of the orthopositronium annihilating through collisions with nearby atoms.  Their results 

were the first to show good agreement with QED.  Vallery et al [19] found good agreement in 2003, 

with a measurement using a nanoporous silica film to form positronium.  The silica film slowed the 

positronium down sufficiently to eliminate most of the interaction with nearby atoms.  Finally, Asai et 

al [20] in 2004 performed another experiment similar to the 1995 experiment, but with roughly half of 

the previous statistical  uncertainty.   

1.3 Theory of Positronium Formation and Decay 

Positronium formation occurs when a positron captures an atomic electron to form a bound state.  

The theory of positronium formation is reviewed in Ref. [28].  A simplified model for formation of 

positronium may be understood as follows.  Positrons which enter a gas are slowed by collisions with 

the gas molecules until their energy is lower than the energy required to disassociate positronium, 

around 6.8 eV.  At this energy the positrons can form positronium by capturing atomic electrons.  

However, if the energy of the positron becomes too low, it is also unable to capture an electron.  The 

energy range in which positronium formation is possible is known as the “Ore gap.”  Generally around 

20% of the positrons entering a gas will form positronium [29].  If the positron’s energy is below the 

“Ore gap,” however, it cannot capture an electron and will annihilate directly with an atomic electron.  

The decay rate for this process is faster than that of orthopositronium, however, and can be 

distinguished in analysis.  Positronium formation generally occurs in less than 1 ns, so it is negligible 

when measuring the decay rate of orthopositronium [28]. 

When positronium decays, it obeys the charge-conjugation selection rule,  

                                                                  ,)1()1( ns −=− +  (1) 

where   is the orbital angular momentum, s is the total spin, and n is the number of gamma rays 

emitted.  Since  =0 in the ground state, parapositronium (with s=0) must decay into an even number 

of gamma rays, while orthopositronium (with s=1) must decay into an odd number.  For 

parapositronium the most likely decay channel is therefore into two gamma rays, and from energy-
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momentum conservation these two gamma rays must be back-to-back, each with half the energy of 

the positronium atom, or about 511 keV.  Since decay into a single gamma ray is forbidden by 

momentum conservation, orthopositronium must decay into at least three gamma rays.  Momentum 

conservation also requires that each gamma ray must have less than 511 keV of energy.    

As shown diagrammatically in Figure 1, the energy of photon p2 may be calculated given the energy of 

photon p1 and the angle θ, for the decay of orthopositronium into three gamma rays.   

 

 

Figure 1.  The three gamma decay of orthopositronium.  In the center is 

the positronium atom.  The three gamma rays ),,( 321


ppp  are 

shown being emitted.  The angle between 1p


 and 2p


 is θ.   

To derive this equation, start with the conservation of four-momentum for photons, 

,321


pppp =++  

where the pi are the four-momenta of the three annihilation gamma rays, i=1, 2, 3, which is given in 

terms of the three momentum ip


 by ).,( iii ppp


=


  The energy of a photon is given by .cpE ii =   

Since the positronium is at rest, its four-momentum is approximately given by ),0,2(


emp =  where 

me is the mass of the electron, neglecting the binding energy of the positronium atom.  Rearranging the 

above equation in order to eliminate p3
μ, which is not measured, yields  

p1
μ 

p2
μ 

θ 

p3
μ 
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.321


pppp −=−+  

Next p3 may be removed from the equation by squaring.  Letting emM 2= ,  

.0222 3322121

22 ==−−+ 














ppppppppcM  

Now we know that )cos1(2121 


−= pppp , and ,11 Mcppp =


 so solving for p2 yields 

                                                          .
)cos1(

2

1

1

22

1

2
Mcp

cMMcp

p
−−

−

=


 (2) 

This relationship will be useful in analyzing the data, because when two or more gamma rays are 

detected in coincidence, their energies can be checked against this relationship to confirm that they are 

actually from an orthopositronium annihilation event.  

Once the positronium has formed, it will decay according to the exponential decay law,  

.0

teNN −=  

In this formula λ is the decay rate, N0 is the initial number of positronium atoms, and N is the number 

of positronium atoms remaining at time t.  The decay rate in a gas is always higher than the decay rate 

in the vacuum, however, because the positron may annihilate with a nearby, bound electron.  The 

usual procedure used in prior experiments in gas has been to measure the decay rate at several 

pressures and use a linear fit to extrapolate to zero pressure.   

Another problem which can occur (especially in a system contaminated with an oxygen-rich gas such 

as air) is called spin-exchange.  Molecular oxygen has two unpaired spins, and it therefore efficiently 

converts orthopositronium into parapositronium.  The parapositronium will decay almost immediately, 

which makes it appear that the orthopositronium has a faster decay rate than it actually does.  This 
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makes it important to avoid having oxygen or similar molecules in the gas.  Another issue is the 

thermalization of the positron.  If the positron loses energy until it is below the “Ore gap,” then it can 

only lose further energy by scattering elastically, and will take a relatively long time to reach thermal 

energies.  After this, the positron will annihilate with a relatively low decay rate.  This can distort the 

measurement of the decay rate as well.  Often isobutane (whose electron configuration does not cause 

spin conversions) will be used, as it exhibits this effect much less than many other gases.  Using a solid 

material instead of a gas, and using energy information to distinguish the different types of annihilation 

events, can help to reduce these types of systematic uncertainty.  
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Chapter 2 

DESCRIPTION OF EXPERIMENTAL APPARATUS 

2.1 Overview of the Experiment 

The novel idea in this experiment is to attempt to eliminate the accidental parapositronium events by 

measuring the gamma ray energies and using the energy relationship in Eq. (2).  Using this relationship 

it should be possible to check events with multiple gamma ray detections to confirm that they came 

from an orthopositronium annihilation event, and not from a parapositronium conversion event or 

accidental coincidence (e.g. from a cosmic ray) by examining the energies of the detected gamma rays.   

In order to create positronium, a positron source is needed.  In this experiment, the positron source 

was 22Na.  The decay scheme for 22Na is shown in Figure 3.  The half life of 22Na is 2.6 years, and it 

decays into 22Ne.  For 90.5% of these decays, the channel is positron (β+) emission and decay to an 

excited state of 22Ne, followed by a subsequent 1.275 MeV gamma ray.  Therefore about 90.5% of the 

time, the detection of a 1.275 MeV gamma ray signals the release of a positron into the system.   

 

Figure 2.  The decay scheme for 22Na [30].  About 90.5% of these decays 
involve the release of a positron and a 1.275 MeV gamma ray.  The diagram 
is taken from Ref. [31]. 
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2.2 Detectors and Vacuum System 

In order to conduct the experiment, a vacuum chamber to form positronium and detectors to look for 

annihilation gamma rays were needed.  The experimental chamber and the detectors are shown in 

Figure 4.  The large clear dome in the center of the photograph is the vacuum chamber, a Nalgene 

Vacuum Chamber (Cat. No. 5305-0509).  The chamber had a height of 23.7 cm, a diameter of 17 cm, 

and a wall width of 2 mm.  This was pumped down with a Sargeant Welch Duo Seal vacuum pump, 

connected with rubber hoses to the chamber, and an air intake valve.  The pressure was reduced to less 

than 10-4 torr over a period of a day.  The pressure gauge (an Infinicon FL 9496 Hot Ion Combi 

Gauge) uses a thermocouple gauge and an ion gauge, but the ion gauge was broken.  This prevented 

the actual pressure from being measured, since it resulted in the gauge not being able to operate at 

pressures lower than 10-4 torr.  In the center of the vacuum chamber there was a small plastic cup, with 

a diameter of 5 cm, filled to a height of about 5 cm with aerogel fragments.  Aerogel [32] is a very light 

solid, and is composed of thin cell walls with pockets between them.  Once the air was removed from 

the vacuum chamber, these pockets were empty.  Underneath the cup there was a clear disk, which 

contained 22Na, with an activity of slightly less than 1 μCi.  The source was constructed by evaporating 

a solution of 22NaCl and hydrochloric acid onto the plastic disk.  Between the source and the cup there 

was a thin layer of plastic wrap, which was used to slow the positrons before they entered the aerogel.  

Below the 22Na source and outside the vacuum chamber was a plastic scintillator detector, Bicron 

Corp. Bc400, with a diameter of 5 cm and a length of 15 cm.  The detector cannot be seen in Figure 3, 

but the photomultiplier tube (PMT) base to which it was attached may be seen protruding out to the 

right.  Around the plastic scintillator there were lead bricks to reduce the accidental events in the 

plastic scintillator and support the vacuum chamber.  The plastic detector was used to detect the 1.275 

MeV gamma rays which signal the probable release of a positron from the 22Na source.  The rise time 

on the photomultiplier tube for the plastic scintillator was about 4 ns [33].  The 22Na source was sitting 

on top of two lead rings, which allow the gamma ray to reach the plastic scintillator.  

The experiment operated as follows.  The positrons traveled up from the 22Na source and into the cup.  

There they lost their kinetic energy in collisions with the cell walls until they were moving slowly 
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enough to capture an atomic electron.  Once this occurred, the positronium drifted into the vacuum 

pockets in the aerogel and decayed there. 

 

 

Figure 3.  A photograph of the detectors, the vacuum chamber, the source, 
and the aerogel (used for positronium formation).  Positrons released by 
the 22Na source under the plastic cup entered the aerogel where they were 
slowed and formed positronium.  The annihilation gamma rays were 
detected by the surrounding NaI scintillators.  The 1.27 MeV gamma ray 
released by the 22Na were detected by the plastic scintillator underneath the 

vacuum chamber. 

Around the vacuum chamber were three NaI scintillator detectors (Bicron Corp. Model 2M1/2), with 

a diameter of 2’’ and a thickness of 1’’.  These detected the annihilation gamma rays from the 

positronium decay events.  For all the data which have been collected, the detectors were each placed 
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with a 120 degree angle between them.  The angle was measured by using the calibrated angle plate 

underneath the detectors, shown in Figure 3.  The plate had a mark at each degree.  Figure 4 and 

Figure 5 show diagrams of the experimental setup. 

 

Figure 4.  Side view of the experimental setup.  The plastic detector is shown at the 
bottom, underneath the 22Na source.  Above the 22Na source is the cup filled with 
aerogel.  Positronium was formed in the cup and the annihilation gamma rays were 

detected by the NaI detectors.   

2.3 Scintillator Detectors 

2.3.1 Operation 

The gamma ray detectors used in this experiment were scintillation detectors.  A diagram of a 

scintillator is shown in Figure 6.  
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Figure 5.  Top view of the experimental setup.  The 22Na source is shown 
in the center, over the plastic scintillator.  Above the 22Na source was the 
cup filled with aerogel.  Positronium was formed in the aerogel and the 
annihilation gamma rays detected by the surrounding NaI scintillation 

detectors, which were placed with an angle of 120 degrees between them. 

The gamma ray travels into the scintillator, where it may interact through Compton scattering or the 

photoelectric effect, knocking out an atomic electron.  In an inorganic scintillator such as the NaI 

crystal scintillator, this raises electrons to the conduction band, and the following deexcitation process 

releases low energy photons [34].  In an organic scintillator such as the plastic scintillator, the ionizing 

radiation causes an excitation of the molecules, which then release low energy photons in deexcitation 

[34].  The scintillator material is transparent to allow the photons to travel freely within it.  The 

scintillator’s index of refraction can cause near total internal reflection so that the light does not 

escape.  Also, the scintillator is surrounded by a reflective foil which reflects light back into the 
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scintillator.  The scintillator is connected to a light pipe, which is a transparent plastic through which 

the light can travel into the photomultiplier tube. 

 

 

Figure 6.  Diagram of a scintillator detector with attached photomultiplier 
tube.  The pulse shown is a voltage/time graph.  The diagram is taken from 
Ref. [35]. 

The photomultiplier tube has a photocathode which releases electrons by the photoelectric effect.  The 

cathode is at a negative potential.  In the PMT there are a series of dynodes, each of which is at a 

higher (that is, less negative) potential than the one preceding it.  The electrons released from the 
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photocathode gain energy from the potential difference as they travel to the first dynode.  They strike 

the dynode which causes more electrons to be released, because the incident electrons have the added 

energy from the potential difference.  The increased number of electrons travels to the second dynode, 

where the process repeats itself in an “electron cascade.”  The current is turned into a voltage pulse 

using a resistor.  The voltage as a function of time of the resulting pulse is also shown in Figure 6.  The 

“tail” is caused by capacitance in the PMT, which causes current to flow for a short time after the 

photo cathode has stopped releasing electrons.  The height of the pulse is proportional to the energy 

lost by the particle in the scintillator, since more light will cause more electrons to be released.  

Diagrams of the PMT bases are shown in Appendix B. 

2.3.2 Energy Resolution 

The energy resolution of the detectors was measured by using a 22Na source and measuring the width 

of the energy peak at half of the maximum height (the “Full Width at Half Maximum,” or FWHM).  

The PMT for the plastic scintillator was run -1200 V, the PMTs for the NaI detectors 1 and 2 were 

run at   -1060 V, and the PMT for the NaI detector 3 was run at -1000 V.  It was found that the plastic 

detector has a FWHM of 20% at an energy of 1.27 MeV.  The peaks from the NaI detectors have a 

FWHM of 9.6% at an energy of 511 keV.  The energy spectra which were used to determine the 

energy resolution are shown in Figure 11 and Figure 12.  Sources of known energy were used to 

calibrate the energy measurements, by locating their peaks in the spectra from the detectors. 

2.3.3     Timing Resolution 

The timing resolution and calibration was particularly important, since it determined the decay rate.  

The calibration of the timing was done by placing a 22Na source between the plastic scintillator and 

each NaI detector.  The positron annihilations result in back-to-back 511 keV gamma rays which were 

detected in each detector simultaneously.  The signal from the plastic detector was then delayed by 

amounts varying from 100-800 ns with a Lecroy 2323A gate generator.  The signal from the NaI 

detector was used to start the Lecroy 3377 Time-to-digital converter (TDC), and the signal from the 

plastic was used to stop it.  The timing was found to have a calibration of 1 ns/channel to within an 
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uncertainty of less than 1% (see Figure 7).  The timing resolution was found to be 9 ns, by measuring 

the FWHM of the peaks from Figure 7, as in Figure 8. 

 

Figure 7.  The calibration of the timing.  This plot was made with the 22Na 
source placed between the NaI and plastic.  The signals were delayed by 
300 to 800 ns using a gate generator.  The calibration was found to be 1 

ns/channel.   

 

Figure 8.  Timing resolution. The FWHM of one of the coincidence peaks 

from Figure 7 was used to obtain the timing resolution, approximately 9 ns.  
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2.4 Electronics 

The electronics system was designed to record any events which might correspond to a positronium 

decay.  It used NIM modules, CAMAC modules, and a CAMAC crate, which was read out by a 

computer which recorded the data.  A diagram of the electronics is given in Figure 10.   

2.4.1 Pulse Height 

The photomultiplier tubes (PMTs) on detectors NaI 1 and NaI 2 were powered by a Tennelec TC 

952A at -1060 V.  The PMT for NaI 3 was powered by an Ortec 456 set at -1000 V, and the PMT for 

the plastic scintillator was powered by a Mechtronics 257 high voltage supply at -1200 V.   

The PMT bases have been modified to have dynode and anode outputs (see Appendix B), in order to 

match the output impedance with the input impedance of the electronics.  The signal from the dynode 

of each PMT was shaped by an Ortec 113 preamplifier and amplified with Ortec 485 amplifier.  The 

signal then went into an Ortec AD413A Amplitude-to-Digital Converter (ADC).  The ADC digitized 

the height of the pulse, which was proportional to the energy deposited in the detector, and records 

the height in digital form.   

2.4.2 Timing 

The anode outputs were used for two purposes, one of which was for timing information.  The anode 

outputs of the NaI detectors are amplified using a Lecroy 612A photomultplier amplifier and then 

discriminated using an Ortec 473A constant fraction discriminator (CFD).  The CFD output a logic 

pulse if it received an input pulse over a certain voltage.  The output of the CFD comes at a constant 

fraction of the pulse height, which makes the timing independent of the energy of the pulse.  This 

increases the timing resolution of the system.  The discriminators were set to their lowest possible 

setting, because low energy gamma rays can signal an orthopositronium decay event.  The logic pulses 

were then converted from NIM to ECL using a Lecroy 4616 ECL-NIM converter.  The signals were 

used to start a Lecroy 3377 Time to Digital Converter (TDC).  The TDC was operated in Common 

Stop mode, which meant that it measured the time between each start signal and a common stop 

signal, which was provided by the signal from the plastic detector.  
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The plastic detector’s anode output was discriminated using an Ortec 436 100 MHZ discriminator.  

The signal from the discriminator triggered a Lecroy 2323A gate generator, which produced a delayed 

logic pulse.  This pulse was converted from NIM to ECL by a Lecroy 4616 converter, and then went 

into the Common Stop on the TDC.  The pulse was delayed in the gate generator sufficiently that it 

always came after the signals from the NaI detectors had started the TDC timers.  Since the plastic 

detector received the 1.27 MeV event before the NaI scintillators detected the annihilation gamma 

rays, the signal from the plastic was delayed so that it always triggered the stop after the NaI detectors 

have triggered the start.  The measured time difference was linearly correlated with the time difference 

between the detection in the plastic detector and the detection in the NaI detector.  However, the 

value reported clearly decreased as the time difference between events increased, so a small number in 

the TDC corresponded to a large time difference between the plastic event and the NaI event. 

2.4.3 Trigger 

The trigger was designed so that data were collected whenever there was an event in the plastic 

detector followed within 1000 ns by an event in any one of the NaI detectors. 

The discriminated signals from the NaI detector’s anode outputs were ORed with a Lecroy 365AL 4-

Fold Logic Unit, and the output triggered an Ortec 416A gate generator.  The discriminated signal 

from the plastic detector’s anode output triggered an Ortec 416A gate generator, and the output of this 

was ANDed with the logic pulse from the NaI detectors.  The output of the AND gate was used to 

gate the Ortec 413 ADC, which signaled the computer whenever data was ready to be read out.   

In order to make certain the trigger would function properly, the timing was set using an oscilloscope, 

as in Figure 9.  Line 3 is the trigger from the plastic detector.  Line 2 is the trigger from the NaI 

detectors.  These must come at the same time in order to make a gate for the ADC (line 1).  Line 4 is 

the pulse whose energy was to be measured.  Since the Ortec 413 measures the height of the pulse, 

only the peak needed to come inside of the gate. 
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Figure 9.  The timing of the pulses on the oscilloscope.  Line 3 is the trigger 
from the plastic detector.  Line 2 is the trigger from the NaI detectors.  
Line 1 shows their combined gate for the ADC.  Line 4 is the ADC input 
which was to be measured.  Since the Ortec 413 functions by measuring 
the pulse height, only the peak needed to come inside the gate. 

2.4.4 Computer Acquisition 

When the ADC received a gate and digitized the pulse height, it triggered the computer that data was 

ready to be collected by setting the CAMAC Look-At-Me (LAM).  The ADC and the TDC were in a 

Jorway Minicrate Model 465 CAMAC crate, with a Jorway 73A Crate Controller [36] which was 

connected to a computer with a SCSI interface.  The computer, a Brite ISO 9002 with a Pentium II 

400 MHz processor, used Red Hat Linux version 7.3 with the 2.4.18 kernel. The data acquisition 

program was written in C++ using ROOT [37] histogramming and GUI classes, with the sjy package 

[38] for CAMAC dataway routines.  It read the data from the ADC and TDC out through Jorway 73A 

controller using the SCSI interface with an Adaptec AID 7880 SCSI card.  The computer then 

recorded the data on hard disk for later analysis.  Files created for two-day running periods were 

approximately 3 MB in size.  The code used to read the data is given in Appendix A.  
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Figure 10.  Circuit diagram of the electronics.  The scintillator detectors 
produced light pulses which are converted to electrical pulses by the 
photomultiplier tubes (PMT).  The dynode signals were amplified (AMP) 
and digitzed by an analog-to-digital converter (ADC).  The anode signals 
from the NaI detectors were amplified (pre-amp) and discriminated (CFD), 
then used to start the time-to-digital converter (TDC).  The anode signal 
from the plastic detector was discriminated (Disc) and delayed in a gate 
generator (GG), then used to stop the TDC.  Data collection was triggered 
by an event in the plastic detector and at least one NaI detector 

simultaneously. 
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Chapter 3 

EXPERIMENTAL RESULTS AND CONCLUSION 

3.1 Decay Rate  Results 

The operation of the experiment and the results of the preliminary analysis are described in this 

section.  Data were collected for approximately 200 hours in February and March of 2005.  The decay 

rates were determined with a ROOT [37] interpreter C++ code (see Appendix A).  In the preliminary 

analysis, the decay rate was calculated for each detector separately, and a weighted average was taken to 

find the final decay rate.  The data were tested so that events would only be used in the analysis of the 

decay rate if the plastic scintillator received a 1.27 MeV gamma ray and if the gamma rays in the NaI 

detectors had an energy less than 511 keV.  Since parapositronium decays into two gamma rays with 

an energy of 511 keV, but orthopositronium emits three gamma rays each with energy less than 511 

keV, this reduced the number of background parapositronium events which were included in the 

measured orthopositronium decay curve.  Unfortunately with 9.6% energy resolution this resulted in 

losing some orthopositronium events. 

 

Figure 11.  The energy spectrum from the plastic scintillator.  The peak 
around channel 5600 corresponds to the 1.275 MeV peak of 22Na which 
signals the probable release of a positron.  The low energy peak was due to 

the 511 keV gamma rays from positron annihilations. 
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In Figure 11 the energy spectrum produced by the plastic detector may be seen.  The left peak is the 

511 keV peak from the positron annihilations, while the peak on the right around channel 5600 is 

from the 1.275 MeV gamma rays which signal the probable release of a positron into the system. 

 

Figure 12.  Energy spectrum of one of the NaI scintillators.  The peak near 
channel 6000 is the 511 keV peak from parapositronium annihilations. 

Figure 12 is a spectrum of the energy from one of the NaI scintillators.  The only events plotted are 

the ones for which there was also a 1.27 MeV event in the plastic detector signaling the probable 

release of a positron within 1000ns.  Figure 13 is the spectrum from one of the NaI scintillators, for 

events in which the plastic scintillator had an event between 4000 and 8000 channels (the 1.27 MeV 

range) and for which the decay time of the event was longer than that of parapositronium but less than 

several half-lives of orthopositronium.   

Figure 14, Figure 15, and Figure 16 show the plots for the decay time spectra.  The events in these 

plots required a simultaneous 1.27 MeV event in the plastic scintillator and a NaI event with less than 

511 keV.  The decay rate was found by using a ROOT interpreter C++ computer program (shown in 

Appendix A) to fit a function of the form BAe t +
 to the data.  The B in this equation accounted for 

FWHM 9.6%  

C
o
u
n

ts
 

Energy (ADC channels) 



 27 

the background events.  The exponent is positive and not negative since the decay time is backwards 

because of the common-stop electronics. 

The analysis of data from the first NaI detector (shown in Figure 14) found a lifetime of 122±11ns.  

Since the decay rate is the inverse of the lifetime, the decay rate from detector one was therefore 

8.2±0.74 μs-1.  This is a slightly higher decay rate than predicted by QED or measured in previous 

experiments.   

In Figure 15 the decay curve taken from the second NaI detector is shown.  The fit for this curve was 

found to be 7.5±0.76 μs-1.  This shows good agreement with the results from detector 1, and also 

agrees with previous experiments and with QED.   

The results from the third NaI scintillator are shown in Figure 16.  The decay rate was found to be 

7.56±1.5 μs-1.  This had a much higher statistical uncertainty than either of the other detectors, perhaps 

because of problems with the detector, which also produced an energy spectrum slightly different than 

the others.   

Taking a weighted average of the results yielded a decay rate of 7.83±0.5 μs-1.  This is a larger 

uncertainty than other modern measurements, in part due to the short time over which the data was 

collected.  However, the results so far are encouraging, since they are consistent with previous 

measurements of the decay rate of orthopositronium.  It is to be hoped therefore that as more 

statistics are gathered the uncertainty can be reduced to a degree where it will be possible to make a 

meaningful comparison of the predictions of QED to the measured decay rate.   

3.2 Energy Conservation Results 

The unique aspect of this measurement was to be the technique of checking energy and momentum 

conservation using Eq. (2) for events in which multiple gamma rays were detected.  To this end, events 

with multiple annihilation gamma rays were analyzed and the measured energies were compared to the 

predictions of Eq. (2). 
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Figure 13.  The energy in one of the NaI detectors, for events in which the 
plastic detector had a 1.27 MeV gamma ray and the decay time was 
consistent with an orthopositronium decay. 

 

Figure 14.  Decay curve from detector 1.  The peak around 800 ns is the fast decay 
curve from the parapositronium.  The black curve is the fit.  The decay rate was 
found to be 8.2±74 μs-1.  Points used were those between channels 300 and 700, 

which correspond to orthopositronium decay.   
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Figure 15.  Decay curve for detector 2.  The points used for the fit were 

between channels 300 and 720.  The black line is the fit.   

 

Figure 16.  Decay curve from NaI detector 3 (counts/ns).  The points used 
in the fit were those between channels 300 and 720.  The black line is the 

fit.   

Time difference (ns) 

C
o
u
n
ts

 

Time difference (ns) 

C
o
u
n
ts

 



 30 

The first step in this process was to check that the decay gamma rays were coming from the same 

orthopositronium decay event.  To do so, the time difference between the signals from the NaI 

detectors which had recorded an event was plotted to make sure that both detectors had fired at the 

same time.  An example of the results is shown in Figure 17.  Almost all of the events came within a 

few ns of each other, which shows that they were unlikely to have come from accidental coincidences. 

Having checked to make sure that coincidence events were coming from positronium decay, it was 

possible to predict the energy in one detector given the energy in another detector and the angle 

between the detectors, using Eq. (2).  The difference between the energy in detector NaI 1 and the 

energy predicted by Eq. (2) using energy information from detector NaI 3 is plotted in Figure 18.   

 

 

Figure 17.  The time difference in ns between signals produced by NaI 3 
and NaI 1, for events in both detectors satisfying energy and timing 
requirements to be an orthopositronium event.  Notice that there are a 
fairly small number of coincident events.  Also notice that most events 
come within approximately 50 ns of each other.  This shows that most 

coincidences are coming from positronium decay events. 

The plot shows very poor agreement between the predicted and the measured energy.  The prediction 

is roughly 100 to 200 keV higher than the measured energy.  It is thought that this is a result of 

Compton scattering out of the detectors.  If this occurs then only part of the gamma ray energy will be 
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detected.  Compton scattering in either of the detectors will result in the predicted energy being higher 

than the detected energy.  There are two cases: Compton scattering in the detector being used to make 

the prediction, and Compton scattering in the detector whose energy is predicted.  If Compton 

scattering occurs in the detector which is being used for the prediction, then the energy used for 

predictions will be lower than the energy of the gamma ray, which from Eq. (2) shows that the 

predicted energy will be higher than the energy which is measured.  If the gamma ray in the detector 

whose energy is predicted Compton scatters, then clearly the measured energy will be less than the 

predicted.  Either way, the predicted energy will be higher if there is Compton scattering in either 

detector.   

This means that using the current setup, it will be very difficult to use energy information from 

coincidence events to check whether the events are from orthopositronium.  If this technique is to be 

implemented, a new system will be needed.  Possible solutions are discussed in section 3.3. 

 

Figure 18.  Histogram of the difference between the predicted energy and 
the measured energy for the NaI 1 scintillator.  The peak would be 
expected to be around zero.  Its shift may, however, be explained by 
Compton scattering. 
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Figure 19.  The energies of the triple-coincidence events.  Notice that the 
total energy was not 1.27 MeV as expected, which signals that Compton 
scattering took place. 

It would be easier to detect all three gamma rays from an annihilation, and simply add their energies to 

verify that they came from the same positronium annihilation.  However, over the 200 hours of data 

collection, only three triple gamma ray coincidences were detected.  They also exhibited total energies 

lower than the expected 1.27 MeV, signaling that Compton scattering took place.  The plot of these is 

shown in Figure 19. 

3.3 Future Plans 

The next goal is to find overcome the problems associated with Compton scattering in order to use 

the energy information in the data analysis, since currently Compton scattering is preventing this.  

Several solutions are being considered: 

3.3.1 Shielding 

It is possible that using energy information to discriminate between orthopositronium and 

parapositronium decays will not help to eliminate many parapositronium events, and may therefore 

not be necessary.  Since parapositronium decays into back to back gamma rays, these will never trigger 
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a coincidence event provided that the detectors are not separated by an angle of π radians.  Therefore 

by avoiding such a detector configuration, and requiring a coincidence in at least two detectors, the 

only way in which a parapositronium event could appear to be an orthopositronium event would be if 

a decay gamma Compton scattered in the source or nearby material (thereby resulting in the gamma 

rays no longer traveling back to back), or if it Compton scattered from one detector to the other.  

Compton scattering cannot be controlled, but the probability of scattering from one detector to 

another can be reduced by placing lead shielding between the scintillators; however, Compton 

scattering in the lead itself could make it worse.   

3.3.2 Compton Suppression 

Another solution would be to implement a Compton suppression scheme, in which another detector 

is placed around each NaI scintillator.  This surrounding detector would detect most gamma rays 

which Compton scatter out of the NaI scintillator, and such Compton scatter events could then be 

ignored in data analysis.  However, there is no practical advantage gained by doing this instead of 

simply using a larger detector.  The only reason to do so would be if the primary detector was too 

expensive to obtain a larger detector.  Since this is not the case for NaI, it would make more sense to 

increase the size of the NaI detectors instead, although this would increase the angular uncertainty. 

3.3.3 Germanium Detectors 

An ideal solution would be to use Ge scintillation detectors in a near-4π configuration, such as 

GEANIE [39] or the Gammasphere [40].  Their high energy resolution would help to decrease 

systematic uncertainties in the measurement.  However, these detectors would require Compton 

suppression, and this combined with their high cost makes prohibits their use at this time. 

3.3.4 CsI Scintillation Detectors 

Another solution is to use CsI scintillators instead of NaI.  CsI scintillators are very dense and can be 

made with a large volume.  Their density combined with a large volume would make it less likely that 

Compton scattering out of the detector will occur.  The possibility of obtaining CsI detectors to 

replace the NaI detectors is currently being investigated.  The CsI detectors would cover a larger solid 
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angle, which could help the count rate, but also presents some further problems.  Having a larger solid 

angle for each detector would increase the uncertainty in the angle, which would result in a larger 

uncertainty in the predicted energy.  It would be possible to move the detectors further away from the 

source, however, reducing the solid angle and the probability of detector-to-detector scattering. 

3.3.5 Liquid Xe Proportional Counters 

Finally it may be possible to use liquid Xenon drift chambers to detect the annihilation gamma rays.  

These would allow for very accurate angular measurements, much better than that provided by 

discrete scintillators, have a high efficiency because of its high density, and would allow for very large 

solid angle coverage.  It might be possible to use two drift chambers, one inside the other, in order to 

detect Compton scattering out of the inside detector and prevent such events from being used in 

analysis.  Liquid Xenon drift chambers have a very high efficiency of near 100% for detecting gamma 

rays [41], which combined with the solid angle coverage would increase the count rate significantly.  

Mutiwire liquid Xenon gamma ray proportional detectors have been successfully implemented [42],  

and the electron avalanche behavior has been investigated [43].  A summary of some of the work 

which has been done may be found in Ref. [44].  Using drift chambers would also allow for the 

detection of all three annihilation gamma rays in coincidence.  However, implementing such a system 

would present a large number of technical difficulties which would need to be explored.  Using CsI 

scintillators or implementing a direct Compton suppression scheme as discussed above would be 

easier to implement.  
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Appendix A 

COMPUTER CODES 

A.1     Introduction 

In this section, the code used to read the data from CAMAC crate and the code used in analysis are 

presented.   

A.2     Data Acquisition Code 

The computer code to read out the ADC and the TDC using the Jorway 73A CAMAC crate controller 

[36] was written using the ROOT [37] histogramming and GUI classes and the sjy [38] CAMAC 

routines.   

A.2.1    Makefile 

Here is the makefile, which is used to compile  and link the program.  The makefile compiles 

example.c, main.cxx, and gui.cxx.  The compilation of example.c is a carryover from an older version 

of the program; all functions are now kept in main.cxx and gui.cxx.  These are presented below, and 

their uses described.  The resulting object files are then linked together into the executable “example”. 

ROOTCFLAGS    = $(shell root-config --cflags) 

ROOTLIBS      = $(shell root-config --libs) 

ROOTGLIBS     = $(shell root-config --glibs) 

 

# Linux with egcs 

CXX           = g++ 

CXXFLAGS      = -O -Wall -fPIC 

LD            = g++ 

LDFLAGS       = -g 

SOFLAGS       = -shared 

 

 

CXXFLAGS     += $(ROOTCFLAGS) -I/root/camac/include 

LIBS          = $(ROOTLIBS) 

GLIBS         = $(ROOTGLIBS)  

CAMACLIB      = -L/root/camac/lib -lsjy 

#----------------------------------------------------------------

-------------- 

#example: example.cxx 

# g++ -o example.o -c example.cxx $(CXXFLAGS) 
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# g++ -g example.o $(GLIBS) $(CAMACLIB) -o example 

# @echo "example done" 

 

example: example.c example.h main.cxx gui.cxx gui.h 

 gcc -c example.c -o example.o $(CXXFLAGS) 

 gcc -o main.o -c main.cxx $(CXXFLAGS) 

 gcc -o gui.o -c gui.cxx $(CXXFLAGS) 

 g++ -g main.o example.o gui.o $(GLIBS) $(CAMACLIB) -lThread -o 

example 

 @echo "example done" 

gui: 

 gcc -o gui.o -c gui.cxx $(CXXFLAGS) 

 g++ -g main.o example.o gui.o $(GLIBS) $(CAMACLIB) -lThread -o 

example 

 

 

clean: 

 @rm -f *.o core 

 

A.2.2     Main.cxx 

The file main.cxx is used to create the application which reads out the data from the CAMAC crate. 

#include "gui.h" 

//#include <TThread.h> 

#include <iostream.h> 

#include <stdlib.h> 

TROOT root("GUI", "GUI test environement"); 

int argm; 

int main(int argc, char **argv) 

{ 

if (argc >1) argm = atoi(argv[1]); 

else argm = 1; 

   TApplication theApp("App", NULL,NULL); 

   if (gROOT->IsBatch()) { 

      fprintf(stderr, "%s: cannot run in batch mode\n", argv[0]); 

      return 1; 

   } 

 

   TestMainFrame mainWindow(gClient->GetRoot(), 700, 420); 

   //TThread *prog=new TThread(&threadfunc,(void*)NULL); 

   //prog->Run(); 

   //mainWindow.CAMACTalk(); 

   //theApp.Run(true); 

   //mainWindow.CAMACTalk(); 

 

   return 0; 

} 
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A.2.3     Gui.cxx 

Gui.cxx is used to create the window for the application.  It initializes the SCSI system, initializes the 

CAMAC crate, and initializes the individual CAMAC modules.  It also performs the function of 

reading out the data in response to the trigger from the CAMAC crate.  Finally it stores all the data in a 

ROOT Tree, in a file called “test33.root”.  The window is updated periodically so that the events can 

be visualized.  The file gui.cxx has its own header file, gui.h, which may be found in section A.2.4.  The 

header file primarily serves to include all the other necessary header files. 

/* 

 * GUI.CXX -- gui class implementation file for the combined 

program 

 */ 

 

#include "gui.h" 

#include <fstream> 

#include <stdlib.h> 

#include <iostream.h> 

#include <unistd.h> 

#include <string.h> 

//#include <sstream> 

extern "C"{//the "example.h" file contains all the actual 

functions for talking to the CAMAC crate 

#include"example.h" 

#include "ieee_fun_types.h" 

} 

extern int argm; 

  //initialize the window 

  bool run=true; 

  bool rexit=false; 

TString ConvertIntToString(int code){//used by DataFileName 

method to generate the file names 

 

 int xx = code; 

 //for (int tint=0;tint<64;tint++){str[tint]=" "; 

 //} 

 TString retr;; 

 while (xx>0) 

 { 

 retr.Prepend((char)((xx % 10) +48)); 

 xx=xx/10; 

 } 

 return retr; 
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} 

 

int dat1[4]; 

TestMainFrame::TestMainFrame(const TGWindow *p, UInt_t w, UInt_t 

h) 

      : TGMainFrame(p, w, h) 

{ 

run = true; 

filecode=1; 

//cout<<DataFileName()<<endl;; 

  // Create container 

  //TreeData = TTree("FileData","Treedata"/*implicitly use split 

level 99*/); 

 

  //appears we want ("name",thing to fill with, "name"); 

  //TBranch *BranchData = TreeData->Branch("events","Event",void 

* addobj, bufsize, splitlevel); 

  //not sure what to put in for those particular things 

 

  TGCompositeFrame *pContainer = new TGCompositeFrame(this, 200, 

100); //Main window's container 

  pContainer->SetLayoutManager(new TGVerticalLayout(pContainer)); 

  pTab = new TGTab(pContainer,w-100,h-100); //the tab widget, 

which manages the tabs 

  AddFrame(pContainer, new TGLayoutHints(kLHintsNormal, 1, 1, 1, 

1));  //we want the container in the main window 

 

  // Create canvas 

  pContainer->AddFrame(pTab, new TGLayoutHints(kLHintsTop | 

kLHintsExpandX,1, 1, 1, 1));//and the tab widget in the main 

container in the main window 

 pTab->Associate(this);//associate pTab with the TestMainFrame 

object 

 //initialize the buttons: new TGTextButton(parent, label, id 

number); 

  Buttons[0] = new TGTextButton(this,"Start/Stop",tStartStop); 

  this->AddFrame(Buttons[0], new 

TGLayoutHints(kLHintsCenterX,5,5,3,4)); 

  Buttons[1] = new TGTextButton(this,"Exit",tExit); 

  this->AddFrame(Buttons[1], new 

TGLayoutHints(kLHintsCenterX,5,5,3,4)); 

  names[0]="TDC 1"; 

  names[1]="TDC 2"; 

  names[2]="TDC 3"; 

  names[3]="ADC 0 - Plastic"; 

  names[4]="ADC 1"; 

  names[5]="ADC 2"; //for easy, no-compile custimization, we 

should have a function here reading a data file 

  names[6]="ADC 3"; 



 39 

  for (int i=0;i<NCHAN;i++){tab_frame[i] = pTab-

>AddTab(names[i]);}  //initializes all tab_frames to point to tabs 

contained by pTab 

  for (int i=0;i<NCHAN;i++){pRHistCanvas[i] = new 

TRootEmbeddedCanvas(names[i], tab_frame[i],  400, 300);} //gives 

each tab_frame a histogram canvas 

  //note that it has to go with tab_frame as the parent!!! 

  pTab->MapSubwindows(); 

  pTab->Layout(); 

  //tab_frame->AddFrame(Buttons[0],new TGLayoutHints(kLHintsTop, 

             //| kLHintsExpandX | kLHintsExpandY, 

             //1, 1, 1, 1)); 

  //tab_frame->AddFrame(Buttons[1],new TGLayoutHints(kLHintsTop 

 //            | kLHintsExpandX | kLHintsExpandY, 

 //            1, 1, 1, 1)); 

 for (int i=0;i<NCHAN;i++){     //Actually give each tab_frame its 

respective histogram canvas 

  tab_frame[i]->AddFrame(pRHistCanvas[i], new 

TGLayoutHints(kLHintsBottom 

             | kLHintsExpandX | kLHintsExpandY, 

             1,1,1,1));} 

  pContainer->AddFrame(Buttons[0], new 

TGLayoutHints(kLHintsNormal, 500, 100, 1, 1)); 

 for (int i=0;i<NCHAN;i++){ 

  pRCanvasHist[i] = pRHistCanvas[i]->GetCanvas();  //set up each 

histogram canvas 

  pRCanvasHist[i]->Divide(1,1);//appears to be vertical 

divisions, horizontal divisions 

  } 

 

 

  // Create histograms with proper initialization for each. 

 // Make sure there's the same number as for NCHAN!  should have a 

function here 

    h_L[0] = new TH1F("TDC 1", "TDC 1", 1050, 0, 1050.0); 

    h_L[0]->Reset(); 

    pRCanvasHist[0]->cd(1); 

    h_L[0]->Draw(); 

 

    h_L[1] = new TH1F("TDC 2", "TDC 2", 1050, 0, 1050.0); 

    h_L[1]->Reset(); 

    pRCanvasHist[1]->cd(1); 

    h_L[1]->Draw(); 

 

    h_L[2] = new TH1F("TDC 3", "TDC 3", 1050, 0, 1050.0); 

    h_L[2]->Reset(); 

    pRCanvasHist[2]->cd(1); 

    h_L[2]->Draw(); 

 

    h_L[3] = new TH1F("ADC 0", "ADC 0", 8000, 1.0, 8000.0); 
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    h_L[3]->Reset(); 

    pRCanvasHist[3]->cd(1); 

    h_L[3]->Draw(); 

 

    h_L[4] = new TH1F("ADC 1", "ADC 1", 8000, 1.0, 8000.0); 

    h_L[4]->Reset(); 

    pRCanvasHist[4]->cd(1); 

    h_L[4]->Draw(); 

 

    h_L[5] = new TH1F("ADC 2", "ADC 2", 8000, 1.0, 8000.0); 

    h_L[5]->Reset(); 

    pRCanvasHist[5]->cd(1); 

    h_L[5]->Draw(); 

 

    h_L[6] = new TH1F("ADC 3", "ADC 3", 8000, 1.0, 8000.0); 

    h_L[6]->Reset(); 

    pRCanvasHist[6]->cd(1); 

    h_L[6]->Draw(); 

 

 

  h_L[0]->SetFillColor(3); 

  h_L[1]->SetFillColor(6); 

 

  MapSubwindows(); 

  Resize(700,500);  //set the window size to 600x400 

  SetWindowName("Positronium"); 

  MapWindow(); 

  CAMACInit(); 

 while (!rexit){ 

 if (run)CAMACTalk(); 

 gSystem->ProcessEvents(); 

 } 

 CloseWindow(); 

}//End TestMainFrame::TestMainFrame 

 

TestMainFrame::~TestMainFrame() 

{ 

   // Delete all created widgets. 

 

} 

//to gracefully exit the program on a button click 

void TestMainFrame::CloseWindow() 

{ 

   // Got close message for this MainFrame. Calls parent 

CloseWindow() 

   // (which destroys the window) and terminate the application. 

   // The close message is generated by the window manager when 

its close 

   // window menu item is selected. 

   TGMainFrame::CloseWindow(); 
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   gApplication->Terminate(0); 

   exit(0); 

} 

//this method does all the processing of input which is 

nonstandard; ie not built into the ROOT classes 

Bool_t TestMainFrame::ProcessMessage(Long_t msg, Long_t parm1, 

Long_t) 

{ 

   // Handle messages send to the TestMainFrame object. E.g. all 

menu button 

   // messages. 

 

   switch(GET_MSG(msg)){ 

  case kC_COMMAND: 

         switch (GET_SUBMSG(msg)) { 

 

            case kCM_BUTTON: 

               //printf("Button was pressed, id = %ld\n", parm1); 

        //for button events, parm1 is the button ID. 

               if (parm1 == tExit){rexit=true;} 

        if (parm1 == tStartStop){run=!run; 

 

         }//end parm1 == tStartStop 

              break; 

  } 

 } 

   return kTRUE; 

} 

/*Bool_t TestMainFrame::HandleButton(Event_t *event1){ 

run=!run; 

}*/ 

//this is the function which takes user input and collects data 

void TestMainFrame::CAMACInit(){ 

int i; 

int treedat[4]; 

int ext_Z, ext_C, ext_inhibit, ext_read_lam; 

int ext_TDC3377_0, ext_TDC3377_1, ext_TDC3377_2; 

int ext_TDC3377_3, ext_TDC3377_4, ext_TDC3377_5; 

int ext_ADC413_0, ext_ADC413_1, ext_ADC413_2, ext_ADC413_3; 

int q,lam; 

int counter; 

int block[4]={0}; 

int updatecheck; 

int data; 

 

/* open the SCSI device */ 

if((cdchn(0,1,0) &1) != 1){ 

 perror("cdchn error"); 

 exit(2); 

 } 
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/* set the controller type */ 

ccctype(0,0,1); /* parallel - Jor 73A is considered parallel */ 

 

 

cdreg(&ext_Z,0,1,28,8); 

cdreg(&ext_C,0,1,28,9); 

cdreg(&ext_inhibit,0,1,30,9); 

cdreg(&ext_read_lam,0,1,30,0); 

cdreg(&ext_TDC3377_0,0,1,9,0); 

cdreg(&ext_TDC3377_1,0,1,9,1); 

cdreg(&ext_TDC3377_2,0,1,9,2); 

cdreg(&ext_TDC3377_3,0,1,9,3); 

cdreg(&ext_TDC3377_4,0,1,9,4); 

cdreg(&ext_TDC3377_5,0,1,9,5); 

cdreg(&ext_ADC413_0,0,1,8,0); 

cdreg(&ext_ADC413_1,0,1,8,1); 

cdreg(&ext_ADC413_2,0,1,8,2); 

cdreg(&ext_ADC413_3,0,1,8,3); 

 

 

// Flash the inhibit light -- let us know its working 

//for (i=1;i<2;i++) { 

//cssa(26,ext_inhibit,&dummy,&q); // set dataway inhibit 

//sleep(1); 

//cssa(24,ext_inhibit,&dummy,&q); // remove dataway inhibit 

//sleep(1); 

//}//include this if you need to test whether the computer can 

communicate 

//with the crate at all. 

 

// Clear and Reset the dataway 

cssa(26,ext_inhibit,&dummy[0],&q); // set dataway inhibit 

cssa(26,ext_Z,&dummy[0],&q); // dataway Z 

cssa(26,ext_C,&dummy[0],&q); // dataway C 

//cssa(24,ext_inhibit,&dummy,&q); // remove dataway inhibit 

//DO ADC SETUP 

//Set control registers 

  dummy[0]=29440; 

  cssa(16,ext_ADC413_0,&dummy[0],&q);//ctrl reg 1 

  dummy[0]=15; 

  cssa(16,ext_ADC413_1,&dummy[0],&q);//ctrl reg 2 

  cssa(9,ext_ADC413_0,&dummy[0],&q);//clear module 

//Enable LAM 

cssa(26,ext_ADC413_0,&dummy[0],&q); 

cssa(10,ext_ADC413_0,&dummy[0],&q);//clear lam 

//END ADC SETUP 

// Set up TDC module for single word common start mode one 

 

//CAMAC reprogramming xilinx chip 
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//Enable Xilinx program 

cssa(9,ext_TDC3377_0,&dummy[0],&q); 

 

//Reset xilinx 

cssa(30,ext_TDC3377_0,&dummy[0],&q); 

 

//Select EPROM mode 0, common stop, single word 

//cssa(20,ext_TDC3377_0,&dummy[0],&q); 

 

//Begin xilinx programming se&quence 

cssa(25,ext_TDC3377_0,&dummy[0],&q); 

 

// wait for 500 ms (or actually 1 seconds) 

sleep(1); 

 

//Test Xilinx programming done 

q = 0; 

while (q == 0) 

 { 

 cssa(13,ext_TDC3377_0,&dummy[0],&q); 

 } 

 

 

//Reset PAL, clear buffers, disable xilinx program mode 

cssa(9,ext_TDC3377_0,&dummy[0],&q); 

 

 

//Set registers 

 

//Register 0 

// module ID = FF 

// 1 ns resolution 

// leading edge 

// CAMAC readout 

// multievent buffer 

// header 

 

buf[0]=0x11FF;//4351 

cssa(17,ext_TDC3377_0,&buf[0],&q); 

 

 

//Register 1 

// event number starts at zero 

// no MPI 

// normal FAST FER 

// max trigger width and delay 

 

buf[0]=0x00FF;//0 

cssa(17,ext_TDC3377_1,&buf[0],&q); 
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//Register 2 

// full scale 1016 ns 

// 1 hit allowed max 

 

buf[0]=0x07E1;//2017 

cssa(17,ext_TDC3377_2,&buf[0],&q); 

 

//Register 3 

// zero offset 

// no request delay 

 

buf[0]=0x0000;//1008 

cssa(17,ext_TDC3377_3,&buf[0],&q); 

 

//Register 4 

//time out at 550ns 

buf[0]=0x000B;//11 

cssa(17,ext_TDC3377_4,&buf[0],&q); 

 

//Register 5 

//no test mode 

buf[0]=0x0000;//0, 0x101 for test mode 

cssa(17,ext_TDC3377_5,&buf[0],&q); 

 

//All Registers are now set up 

 

//Enable LAM 

cssa(26,ext_TDC3377_0,&dummy[0],&q); 

 

//Enable acquisition mode 

cssa(26,ext_TDC3377_1,&dummy[0],&q); 

 

//clear the LAM 

cssa(10,ext_TDC3377_0,&dummy[0],&q); 

 

// remove dataway inhibit 

cssa(24,ext_inhibit,&dummy[0],&q); 

return; 

} 

 

 

void TestMainFrame::CAMACTalk(){ 

 

//This method is really the entire point of the program.  Once it 

starts running, 

//this method is invoked and runs for the rest of the time. 

 

 

int i; 

int treedat[4]; 
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int ext_Z, ext_C, ext_inhibit, ext_read_lam; 

int ext_TDC3377_0, ext_TDC3377_1, ext_TDC3377_2; 

int ext_TDC3377_3, ext_TDC3377_4, ext_TDC3377_5; 

int ext_ADC413_0, ext_ADC413_1, ext_ADC413_2, ext_ADC413_3; 

int q,lam; 

int counter; 

int block[4]={0}; 

int updatecheck; 

int info; 

 

TStopwatch *stopwatch = new TStopwatch(); 

 

TFile FileData("test33.root","RECREATE"); 

TTree *TreeData = new TTree("positronium","positronium-tree"); 

 

 

bool fileisopen=false; 

 

 

  TreeData->Branch("ADC0",&dummy[0],"ADC0/s");//s=unsigned 16bit 

integer 

  TreeData->Branch("ADC1",&dummy[1],"ADC1/s"); 

  TreeData->Branch("ADC2",&dummy[2],"ADC2/s"); 

  TreeData->Branch("ADC3",&dummy[3],"ADC3/s"); 

  TreeData->Branch("TDC1",&dat1[1],"TDC1/I");//I=normal integer 

  TreeData->Branch("TDC2",&dat1[2],"TDC2/I"); 

  TreeData->Branch("TDC3",&dat1[3],"TDC3/I"); 

 

/* open the SCSI device */ 

 

/* set the controller type */ 

ccctype(0,0,1); /* parallel - Jor 73A is considered parallel */ 

 

 

cdreg(&ext_Z,0,1,28,8); 

cdreg(&ext_C,0,1,28,9); 

cdreg(&ext_inhibit,0,1,30,9); 

cdreg(&ext_read_lam,0,1,30,0); 

cdreg(&ext_TDC3377_0,0,1,9,0); 

cdreg(&ext_TDC3377_1,0,1,9,1); 

cdreg(&ext_TDC3377_2,0,1,9,2); 

cdreg(&ext_TDC3377_3,0,1,9,3); 

cdreg(&ext_TDC3377_4,0,1,9,4); 

cdreg(&ext_TDC3377_5,0,1,9,5); 

cdreg(&ext_ADC413_0,0,1,8,0); 

cdreg(&ext_ADC413_1,0,1,8,1); 

cdreg(&ext_ADC413_2,0,1,8,2); 

cdreg(&ext_ADC413_3,0,1,8,3); 

 

//main loop 
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updatecheck = 0; 

stopwatch->Start();//start the clock!  No more than 2 hours on 

one file 

 

int timercount=0; 

int nevents=0; 

while(run) 

 { 

 // Process windows events 

 gSystem->ProcessEvents(); 

 

 //check the LAM pattern 

 // 128 = slot 8 (TDC) 

 // 32 = slot 6 (ADC) 

        // 160 = 32 + 128 both TDC and ADC 

 // 

 // 256 = slot 9 (TDC) 

 // 384 = 256 + 128 both slot 8 and 9 

 

 counter = 0; 

 lam = 0; 

 while ((lam & 128) != 128){ 

  cfsa(0,ext_read_lam,&lam,&q); 

   

   counter++; 

   if (counter>500){ 

   gSystem->ProcessEvents();  // do this every once in a while in 

case locked up 

    counter=0; 

   //cout<<"failure"<<endl; 

   } 

   } 

        //cout<<"LAM: "<<lam<<endl; 

 for (i = 0; i < 34; i++){buf[i]=10000;} 

 //Read the data in 

 block[0]=4;//34;//maximum number of transfers to make 

 block[1]=0;// 

 csubc(0,ext_TDC3377_0,buf,&block[0]); 

 

 //Read back data 

 //for (i=0;i<=block[1];i++) cout<<"i =  "<<i<<"  data = 

"<<buf[i]<<endl; 

 //cout<<buf[1]<<" ";//endl; 

 

 //Read out TDC 

 

        dat1[1]=-1;dat1[2]=-1;dat1[3]=-1; 

 for (int k=1; k<4;k++){ 

 // Fill the histograms 

 if ((buf[k]&0x7c00)/0x400==1){ 
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     dat1[1] = buf[k] & 0x03FF; 

  } 

 if ((buf[k]&0x7c00)/0x400==2){ 

     dat1[2] = buf[k] & 0x03ff; 

  } 

 if ((buf[k]&0x7c00)/0x400==4){ 

     dat1[3] = buf[k] & 0x03ff; 

  } 

 } 

 

    h_L[0]->Fill(dat1[1]); 

    h_L[1]->Fill(dat1[2]); 

    h_L[2]->Fill(dat1[3]); 

   for (i = 0; i < 4; i++){if(buf[i]==10000)cout<<buf[i]<<endl;} 

 nevents++;//TAKE OUT LATER TO PREVENT TROUBLES 

 

  //Read out ADC 

 cssa(2,ext_ADC413_0,&dummy[0],&q); 

 h_L[3]->Fill(dummy[0]); 

 

 cssa(2,ext_ADC413_1,&dummy[1],&q); 

 h_L[4]->Fill(dummy[1]); 

 

 cssa(2,ext_ADC413_2,&dummy[2],&q); 

 h_L[5]->Fill(dummy[2]); 

 

 cssa(2,ext_ADC413_3,&dummy[3],&q); 

 h_L[6]->Fill(dummy[3]); 

 

 //cout<<"ADC "<<dummy[0]<<" "<<dummy[1]<<" "<<dummy[2]<<" 

"<<dummy[3]<<"  "; 

 //cout<<"TDC "<<dat1[1]<<" "<<dat1[2]<<" "<<dat1[3]<<endl; 

 

 TreeData->Fill(); 

 

 //then clear dat1 

 dat1[1]=0;dat1[2]=0;dat1[3]=0; 

 

 cssa(9,ext_ADC413_0,&dummy[3],&q);//not needed in singles mode? 

 

 // Update the histogram display 

 // clear all data and lam 

  cssa(9,ext_TDC3377_0,&dummy[3],&q); 

 

  

 updatecheck++; 

  if (updatecheck>9){//update the window every 10 events. 

  updatecheck=0; 

  for (int i=0;i<NCHAN;i++){ 

    pRCanvasHist[i]->cd(1); 
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     h_L[i]->Draw(); 

     pRCanvasHist[i]->Modified(); 

     pRCanvasHist[i]->Update(); 

   } 

    pTab->DrawBorder(); 

 

 } 

 

 } //end main while 

 

/*  TString fname; 

  while(!fileisopen){ 

   fname.Append("run"); 

   fname.Append(ConvertIntToString(argm)); 

   fname.Append(".root"); 

   if(FileData-

>Open(fname.Data(),"NEW",fname.Data()))fileisopen=true; 

    fname=""; 

 argm++; 

  } 

 

*/ 

 

cout<<"Number of events = "<<nevents<<endl; 

 

 

FileData.cd(); 

TreeData->Write(); 

FileData.Write(); 

FileData.Close(); 

exit(0); 

 

}//end CAMACTalk method 

 

A.2.4 Gui.h 

Gui.h is the header file for gui.cxx.  Its function is to load the necessary C++ header files, and to 

declare certain classes and variables. 

/* 

 * GUI.H -- gui class declaration file 

 */ 

 

#include <stdlib.h> 

 

#include <TROOT.h> 

#include <TApplication.h> 
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#include <TVirtualX.h> 

 

//#include <TGListBox.h> 

#include <TGClient.h> 

#include <TGFrame.h> 

#include <TGIcon.h> 

#include <TGLabel.h> 

#include <TGButton.h>//its important to use this so that we can 

redefine Clicked 

#include <TGTextEntry.h> 

//#include <TGMsgBox.h> 

#include <TGMenu.h> 

#include <TGCanvas.h> 

#include <TGComboBox.h> 

#include <TGTab.h> 

#include <TStopwatch.h> 

//#include <TGSlider.h> 

//#include <TGDoubleSlider.h> 

//#include <TGFileDialog.h> 

#include <TRootEmbeddedCanvas.h> 

#include <TCanvas.h> 

#include <TH1.h> 

#include <TF1.h> 

#include <TFile.h> 

//#include <TH2.h> 

//#include <TRandom.h> 

#include <TSystem.h> 

#include <TEnv.h> 

#include <TGListBox.h> 

#include <RQ_OBJECT.h>//needed for the widgets (buttons, etc.) 

#include <TTree.h> 

//#include <TBranch.h>//I believe this is not needed 

 

//enumerate the various button ids: 

enum buttonidset{ 

tExit,tStartStop 

}; 

class Page {       //I think this class is unneeded and unused 

 

public: 

  Page (TCanvas *c, char *line); 

  ~Page(); 

  int isValid() {return done;} 

  char *Name() {return name;} 

  int Draw(void); 

  TCanvas *Canvas() {return page_canvas;} 

  TH1F *Hist(int x, int y) {return page_hist[x][y];} 

  int nx, ny; 

 

private: 
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  char name[128]; 

  int done; 

  TCanvas *page_canvas; 

  TH1F ***page_hist; 

  int log_flag[100][100]; 

}; 

 

 

//Special class to handle tabs, I think it ends up not being used 

 

class Tab { 

public: 

  Tab(char *tname, TGCompositeFrame *tab_frame, TGMainFrame 

*parent, int tid); 

  ~Tab() {}; 

  Page *page[1000]; 

  int ReadPages(char *fname); 

  TCanvas *canvas; 

 

private: 

  char name[128]; 

 

  TGListBox *list_box; 

  TRootEmbeddedCanvas *emb_can; 

  int tab_id; 

 

  int n_pages; 

}; 

//NCHAN is the number of histograms which we want to look at. 

#define NCHAN 7 

//NCHAN is the number of things we want to look at 

/* 

 * Main Window class 

 */ 

 //this class is what contains almost all the actual, working, 

functions of the program. 

 

 

class TestMainFrame : public TGMainFrame { 

RQ_OBJECT("TestMainFrame");//necessary for signal/slots to work 

here 

 

private: 

  TGCompositeFrame    *pContainer; 

  TGTab    *pTab; 

  TRootEmbeddedCanvas *pRHistCanvas[NCHAN]; 

  TGButton       *Buttons[1]; 

  TCanvas             *pRCanvasHist[NCHAN]; 

  TH1F                *h_L[NCHAN]; 
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  TF1                 *fit_L; 

  TF1                 *fit_R; 

 

public: 

  TGCompositeFrame *tab_frame[NCHAN]; 

  //bool run; 

   TestMainFrame(const TGWindow *p, UInt_t w, UInt_t h); 

   //void StartStop(); 

   virtual ~TestMainFrame(); 

   void CAMACTalk(); 

   void CAMACInit(); 

   virtual void CloseWindow(); 

   virtual Bool_t ProcessMessage(Long_t msg, Long_t parm1, 

Long_t); 

   int filecode;//code for generating the file name 

   Tab *tabs[32]; 

   char * names[NCHAN]; 

   unsigned short dummy[7], buf[34];//dummy is for ADC, buf for 

TDC data 

   TString *fname; 

   //TFile *FileData; 

   //TTree TreeData; 

   //TBranch *ADC1Data, *ADC2Data, *ADC3Data, *ADC4Data, 

*TDC1Data, *TDC2Data, *TDC3Data; 

   //TBranch 

*BranchData1,*BranchData2,*BranchData3,*BranchData4,*BranchData5,

*BranchData6,*BranchData7;//let's hope this works - its based on 

WC 

}; 

 

A.3     Fitting Code 

A.3.1     Fitfun.c 

The data analysis is done using ROOT’s built-in C++ interpreter.  The first step was to load the 

function which was to be fit to the data.  This was accomplished using the file “fitfun.C” which was 

loaded in the interpreter using the command “.L fitfun.C”.  This allows a function of the form 

BAetf

t

+= )(  

to be fit to the data.  In this equation τ is the lifetime.  The decay rate λ is given by .1−=   In the 

function itself, A is par[0], B is par[2], and τ is par[1].   
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Double_t fitfun(Double_t *var, Double_t *par) 

{ 

Double_t y; 

y=par[0]*exp(var[0]/par[1])+par[2]; 

return y; 

} 

 

A.3.2    Fittdc1.c 

Finally, the function loaded in “fitfun.C” must actually be fit to the data.  There are three files used for 

this, “fitTDC1.C,” “fitTDC2.C,” and “fitTDC3,C.”  Only fitTDC1.C is shown below; the others are 

identical except for switching the detector and using slightly different bounds for the fit.  The function 

was executed in the ROOT interpreter using the command “.x fitTDC1.C.”  In this function, the 

channels to be used in analysis (here those between 300 and 800) are passed, and the names of par[0], 

par[1], and par[2] (see fitfun.C) are given.  Values are guessed for each of these parameters (here 40, 

140, and 8).  The function then numerically fits the parameters and prints the results and the 

uncertainties.  It also puts a fit curve on the histogram. 

// .L fitfun.C 

int fitTDC1() { 

TF1 *func=new TF1("fitfun",fitfun,300,800,3); 

func->SetParNames("norm","decay","bkgd"); 

func->SetParameters(40.,140.,8.); 

TDC1->Fit("fitfun","r"); 

} 

 

A.4     Analysis Code 

The next step in analysis was to collect all the stored data files and create all the histograms needed for 

analysis.  This was accomplished using the file “tdelay6.C.”  This program collected each stored data 

file and put all the data into one set of histograms.  Histograms were created of the energy in the 

plastic scintillator, the energy in each NaI detector cut on the energy in the plastic detector being 

between channels 4000 and 8000, and the decay times for each NaI detector cut on the plastic 

detector’s energy being between channels 4000 and 8000 and the NaI detector having an energy of less 

than 511 keV.  Also, the energy of each NaI detector was displayed cut on the decay time being 
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consistent with an orthopositronium event, as well as a plot of the difference between the detection 

times for coincident events, and a plot of the difference between the energy predicted to be in detector 

NaI 1 using energy information from detector NaI 2 and the measured energy in NaI 1. 

/****************************************************************

*********** 

                          tdelay.C  -  description 

 

Plots and fits decay curve for posit_tree experiment. 

 

                             ------------------- 

    begin                : Fri Oct 8 2004 

    copyright            : (C) 2004 by Mark Yuly 

    email                : mark.yuly@houghton.edu 

 

*****************************************************************

**********/ 

 

/****************************************************************

*********** 

 *                                                                         

* 

 *   This program is free software; you can redistribute it 

and/or modify  * 

 *   it under the terms of the GNU General Public License as 

published by  * 

 *   the Free Software Foundation; either version 2 of the 

License, or     * 

 *   (at your option) any later version.                                   

* 

 *                                                                         

* 

 

*****************************************************************

**********/ 

 

 

 

gROOT.Reset("a"); 

 

 

 

//**************************************************** 

 

 

int tdelay6() 

{ 
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int i, j, nentries; 

float energy[4], time[4], total_energy, P; 

 

//Create branch and leaf pointers 

TBranch *ADC_branch[4], *TDC_branch[4]; 

TLeaf *ADC_value[4], *TDC_value[4]; 

 

// Energy Calibration constants 

 

float m[4], b[4]; 

 

m[1]=0.08661; b[1]=0.; 

m[2]=0.07802; b[2]=0.; 

m[3]=0.08517; b[3]=0.; 

 

// Rest mass of posit_tree (keV/c^2) 

 

float MM = 2. * 511.; 

 

// detectors that go together for predictions, along with angles 

// see logbook for how angle is defined (in deg) 

 

int det[4], ang[4]; 

 

det[1]=3;  ang[1]=120; 

det[2]=1;  ang[2]=120; 

det[3]=2;  ang[3]=120; 

 

// Make up the names used for adc and tdcs 

TString adc_name[4], tdc_name[4], spect_name[4], predict_name[4], 

tdiff_name[4]; 

 

for (i=0;i<4; i++) { 

  adc_name[i] = "ADC"; 

  adc_name[i].Append('0'+i); 

  tdc_name[i] = "TDC"; 

  tdc_name[i].Append('0'+i); 

  spect_name[i] = "spect"; 

  spect_name[i].Append('0'+i); 

  predict_name[i] = "predict_"; 

  predict_name[i].Append('0'+det[i]); 

  predict_name[i].Append("_from_"); 

  predict_name[i].Append('0'+i); 

  tdiff_name[i] = "tdiff"; 

  tdiff_name[i].Append('0'+det[i]); 

  tdiff_name[i].Append("--"); 

  tdiff_name[i].Append('0'+i); 

  } 

 

//Set the cuts 
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int adc_l[4],  adc_h[4],  tdc_l[4], tdc_h[4], tdiff_l[4], 

tdiff_h[4]; 

 

adc_l[1]=500; adc_h[1]=5500; 

adc_l[2]=500; adc_h[2]=5500; 

adc_l[3]=500; adc_h[3]=5500; 

adc_l[0]=4500; adc_h[0]=8000; // plastic 

 

 

tdc_l[1]=300; tdc_h[1]=750; 

tdc_l[2]=300; tdc_h[2]=750; 

tdc_l[3]=300; tdc_h[3]=750; 

 

 

// Time diff cuts 

 

tdiff_l[1]=5; tdiff_h[1]=30;  // 1-3 

tdiff_l[2]=-10; tdiff_h[2]=10;  // 2-1 

tdiff_l[3]=-30; tdiff_h[3]=5;  // 3-2 

 

 

 

// Open the root file 

TFile *f[9]; 

  

 f[1]= new TFile("/home/public/camac/Combined2/02-11-05.root"); 

 f[2]= new TFile("/home/public/camac/Combined2/02-16-05.root"); 

 f[3]= new TFile("/home/public/camac/Combined2/02-17-05.root"); 

 f[4]= new TFile("/home/public/camac/Combined2/02-22-05.root"); 

 f[5]= new TFile("/home/public/camac/Combined2/02-24-05.root"); 

 f[6]= new TFile("/home/public/camac/Combined2/02-26-05.root"); 

 f[7]= new TFile("/home/public/camac/Combined2/03-01-05.root"); 

 f[8]= new TFile("/home/public/camac/Combined2/03-03-05.root"); 

  

 TTree *posit_tree; 

 

//TChain posit_tree("posit_tree"); 

//posit_tree.Add("/home/public/camac/Combined2/02-11-05.root"); 

//posit_tree.Add("/home/public/camac/Combined2/02-16-05.root"); 

//posit_tree.Add("/home/public/camac/Combined2/02-17-05.root"); 

//posit_tree.Add("/home/public/camac/Combined2/02-22-05.root"); 

//posit_tree.Add("/home/public/camac/Combined2/02-24-05.root"); 

//posit_tree.Add("/home/public/camac/Combined2/02-26-05.root"); 

//posit_tree.Add("/home/public/camac/Combined2/03-01-05.root"); 

//posit_tree.Add("/home/public/camac/Combined2/03-03-05.root"); 

 

 

// Create the canvas 

TCanvas *c1 = new TCanvas("c1","Decay Time",10,10,1000,750); 



 56 

c1->Divide(4,5); 

 

 

//Creating histograms 

 

TH1F *adc_hist[4], *tdc_hist[4], *espect_hist[4], 

*predict_hist[4], *tdiff_hist[4], *esum_hist, *test_hist; 

 

// plastic 

cout<<"Creating "<<adc_name[0]<<" histogram"<<endl; 

  c1->cd(1); 

  adc_hist[0] = new TH1F(adc_name[0],adc_name[0],8000,0,7999); 

  adc_hist[0]->Draw(); 

 

// energy-sum 

cout<<"Creating energy-sum histogram"<<endl; 

  c1->cd(17); 

  esum_hist = new TH1F("energy-sum","energy-sum",20,0.,2000.); 

  esum_hist->Draw(); 

 

  // test 

cout<<"Creating test histogram"<<endl; 

  c1->cd(13); 

  test_hist = new TH1F("test","test",2050,0.,2050.); 

  test_hist->Draw(); 

 

for (i=1; i<4; i++) { 

 

// raw adc spectra 

  cout<<"Creating "<<adc_name[i]<<" histogram"<<endl; 

  c1->cd(1+i); 

  adc_hist[i] = new TH1F(adc_name[i],adc_name[i],8000,0,7999); 

  adc_hist[i]->Draw(); 

 

// log tdc spectra 

  cout<<"Creating "<<tdc_name[i]<<" histogram"<<endl; 

  c1->cd(5+i); 

  tdc_hist[i] = new TH1F(tdc_name[i],tdc_name[i],2050,0,2049); 

  //tdc_hist[i]->SetMinimum(1); 

  //tdc_hist[i]->SetMaximum(100); 

  (c1->GetPad(5+i))->SetLogy(1); 

  tdc_hist[i]->Draw(); 

 

 

// energy spectra (in keV) 

  cout<<"Creating "<<spect_name[i]<<" histogram"<<endl; 

  c1->cd(9+i); 

  espect_hist[i] = new 

TH1F(spect_name[i],spect_name[i],8000,0.,750.); 

  espect_hist[i]->Draw(); 
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  // time-difference spectra  

  cout<<"Creating "<<tdiff_name[i]<<" histogram"<<endl; 

  c1->cd(13+i); 

  tdiff_hist[i] = new TH1F(tdiff_name[i],tdiff_name[i],1000,-

500.,500.); 

  tdiff_hist[i]->Draw(); 

   

// predicted spectra (in keV) 

  cout<<"Creating "<<predict_name[i]<<" histogram"<<endl; 

  c1->cd(17+i); 

  predict_hist[i] = new TH1F(predict_name[i],predict_name[i],50,-

500.,500.); 

  predict_hist[i]->Draw(); 

} 

 

 

c1->Update(); 

c1->Draw(); 

 

for (i_file=1; i_file < 9; i_file++) 

{ 

cout<<"+++++++++++++++++++++++++++  File #"<<i_file<<endl; 

posit_tree = (TTree*) f[i_file]->Get("positronium"); 

nentries = posit_tree.GetEntries(); 

 

 

// Set Branches and leaves to read in the data 

for (i=0; i<4; i++) { 

  cout<<"Setting branches and leaves for "<<adc_name[i]<<endl; 

  ADC_branch[i] = posit_tree.GetBranch(adc_name[i]); 

  ADC_value[i] = ADC_branch[i]->GetLeaf(adc_name[i]); 

  } 

 

  for (i=1; i<4; i++) { 

  cout<<"Setting branches and leaves for "<<tdc_name[i]<<endl; 

  TDC_branch[i] = posit_tree.GetBranch(tdc_name[i]); 

  TDC_value[i] = TDC_branch[i]->GetLeaf(tdc_name[i]); 

  } 

 

for (j=0; j<nentries; j++) { 

//for (j=0; j<100; j++) { 

 

  // Fill the raw plastic adc histogram 

  ADC_branch[0]->GetEntry(j); 

  if (ADC_value[0]->GetValue(0)>0) {adc_hist[0]-

>Fill(ADC_value[0]->GetValue(0));} 

 

  // Get the entries 

  for (i=1; i<4; i++) { 
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    ADC_branch[i]->GetEntry(j); 

    TDC_branch[i]->GetEntry(j); 

    } 

 

  for (i=1; i<4; i++) { 

 

   energy[i] = 0.; 

   time[i] = 0.; 

 

    // cut on plastic ADC for 1.27 MeV gamma 

   if (ADC_value[0]->GetValue(0) > adc_l[0] && ADC_value[0]-

>GetValue(0) < adc_h[0]) 

 

      { 

 

      // Fill raw ADC histograms cut on plastic ADC for 1.27 MeV 

gamma only3 

      if (ADC_value[i]->GetValue(0)>0) { adc_hist[i]-

>Fill(ADC_value[i]->GetValue(0)); } 

 

      // Fill TDC Histogram, cut on plastic ADC for 1.27 MeV 

gamma and NaI adc for less than 511 keV 

      if (ADC_value[i]->GetValue(0)>adc_l[i] && ADC_value[i]-

>GetValue(0)<adc_h[i]) 

         { 

         if (TDC_value[i]->GetValue(0)!=-1) { tdc_hist[i]-

>Fill(TDC_value[i]->GetValue(0)); } 

         } 

 

      // Fill the "espect" histograms cut on3 

      //   1.  plastic ADC fpr 1.27 MeV gamma 

      //   2.  tdc in proper range 

      //3 

      // Use energy calibration. 

 

 

      if (TDC_value[i]->GetValue(0)>tdc_l[i] && TDC_value[i]-

>GetValue(0)<tdc_h[i]) 

 

        { 

 energy[i] = m[i]*ADC_value[i]->GetValue(0)+b[i]; 

 time[i] = TDC_value[i]->GetValue(0); 

// cout<<energy[i]<<endl;3 

        if (ADC_value[i]->GetValue(0)>0) { espect_hist[i]-

>Fill(energy[i]); } 

        } 

 

      } //if plastic adc 

 

    } // for i 
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   // Fill the energy-sum histogram 

   if ( (energy[1]!=0.) && (energy[2] != 0.) && (energy[3] != 0.) 

) 

     { 

     total_energy = energy[1] + energy[2] + energy[3]; 

     cout<<total_energy<<"  =  "<<energy[1]<<"  +  

"<<energy[2]<<"  +  "<<energy[3]<<endl; 

     esum_hist->Fill(total_energy); 

     } 

 

   // Fill the time difference histograms 

   for (i=1; i<4; i++) 

     { 

     if ( (energy[i] > 0.) && (energy[det[i]] > 0.) &&  (time[i] 

> 0.) && (time[det[i]] > 0.) ) 

       { 

       // cout<<"Time difference: "<<time[i]-time[det[i]]<<"     

D"<<i<<" = "<<time[i]<<"   D"<<det[i]<<" = "<<time[det[i]]<<endl; 

       tdiff_hist[i]->Fill(time[i]-time[det[i]]); 

       } 

    } 

      

   // Fill the prediction histograms 

   for (i=1; i<4; i++) 

     { 

     if ( (energy[i] > 0.) && (energy[det[i]] > 0.) && ((time[i]-

time[det[i]])>tdiff_l[i]) && ((time[i]-time[det[i]])<tdiff_h[i]) 

) 

       { 

       P = (energy[i]*MM - 0.5 * MM*MM) / ( ( 1.-

cos(ang[i]*3.1415/180.) )*energy[i] - MM ); 

       cout<<"Prediction: D"<<det[i]<<" from D"<<i<<"    

P1="<<energy[i]<<"   Predicted:"<<P<<"   

Measured:"<<energy[det[i]]<<endl; 

       predict_hist[i]->Fill(P-energy[det[i]]); 

    //   if (i==1) {test_hist->Fill(time[i]);} 

       } 

 

     } 

 

   // only update the window every 10000 entries 

   if (  ((j/10000)*10000) == j ) 

     { 

     c1->Draw(); 

     c1->Update(); 

     cout<<"Processing entry: "<<j<<endl; 

     } //if 

 

  } // for j 
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} //i_file 

 

c1->Draw(); 

c1->Update(); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 



 61 

Appendix B 

SCHEMATICS OF THE PHOTOMULTIPLIER BASES 

The photomultiplier tube bases were modified to have both a dynode and an anode output.  Initially 

one output was to be used, and the signal split.  However, the input to the PM Amplifier had a 50 Ω 

impedance.  This caused the signal to become too small to use.  It therefore became necessary to use 

two different outputs.  Notice that the anode output has a 1.5 kΩ resistor, while the dynode has a 1 

MΩ resistor.  The schematic for the NaI PMT base is shown in Figure 20, while the plastic PMT base 

is shown in Figure 21. 
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Figure 20.  The schematic of the NaI scintillator PMT base.  The electrons 
cascade from the cathode through the dynodes to the anode and dynode 

outputs. 
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Figure 21.  Schematic of the PMT base for the plastic scintillator.  Again 
the electrons cascade from the cathode through the dynodes. 
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