The Construction of a Deposition Chamber for the In-Situ Study of Thin Metal Films

Kyle Flemington

Brandon Hoffman

Outline

- ► Thin films
- Commercial use
- Research
- Deposition Chamber
- Current state and future plans

http://www.lorextechnology.com/accessories-for-securitycameras/250GB-SATA-security-certified-DVR-hard-drive/1863.p

Thin Metal Films

Thickness << length and width</p>

Commercial use

http://www.lorextechnology.com/accessories-for-securitycameras/250GB-SATA-security-certified-DVR-hard-drive/1863.p

http://uncyclopedia.wikia.com/wiki/File:Cellphone.png

Crystal Lattice Structure

Face Centered Cubic

Miller Indices

Texture Transformation in Thin Films

- Transformation from (1 1 1) to (1 0 0)
- Driving forces behind texture transformation
- Prevailing Model

EBSD images of 1800 nm film with Ti, before and after 50°C anneal for 30 hours.

Data taken in 2009 at Cornell University by Houghton College students

Motivation

Build an Apparatus that will allow us to study:

Grain Orientation

In-situ topography

Texture transformation in thin films

Forces driving texture transformation

The Deposition Chamber

Vacuum Pumps

Rough
3 x 10⁻³ Torr

► Turbo

▶ 9 x 10⁻⁸ Torr

► lon

Reduce vibration while Imaging

Roughing pump used at Houghton College

Turbo pump attached to top of chamber

Physical Vapor Deposition

Electron beam heating

Evaporator

Original Design

Evaporator

New Design

Transformer

 Issues achieving power from High voltage source
The solution

Rate Monitor

► QCM

Evaporation Rate Monitor

► G.R. Giedd and M.H. Perkins (1960)

View of ERM looking straight into anode cylinder

Shutters

Shutter to create gradient sample
Linear feedthrough

- Shutter to completely cover sample
 - Rotary feedthrough

Current Status

Most recent Evaporator design is working
Can make films of a single thickness

Need to refine rate monitor

- Use Ion mill to clean substrate before deposition
- Use Ion pump to maintain High Vacuum