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Abstract 
There is a current demand in computational fluid dynamics (CFD) for higher-order solvers that 
can simulate fluid flows using unstructured grids. Such software would allow for highly-
accurate simulations of complex and industrially-relevant geometries. To help meet these 
needs, a new code, gFR, is being developed by researchers at the NASA Glenn Research 
Center. It is based on the flux reconstruction (FR) methods of H.T. Huynh, which are used to 
solve the three-dimensional Navier-Stokes equations. The methodology is capable of 
performing efficient and accurate large eddy simulations (LES) and, depending on user-
specified choices, can recover many popular high-order methods including the discontinuous 
Galerkin, spectral difference, and spectral volume methods. Runge-Kutta methods are used to 
advance the governing equations in time. While gFR has many theoretical advantages, it had 
only been tested on two problems prior to the present work: a two-dimensional inviscid 
vortex and the Taylor-Green vortex problem. The present study at Houghton College includes 
tests of laminar flow over a flat plate as well as laminar channel flow over a backward-facing 
step. Preliminary results are shown for the two test cases and compared with corresponding 
experimental and theoretical results. Challenges are described and possible future work is 
outlined. 

gFR Methodology 
The gFR code [1,2] uses the flux reconstruction 
 method [3] to discretize the advection terms  
(e.g., 𝜕𝐹 𝜕𝑥 ) in the Navier-Stokes equations.  
In this method, the domain is discretized and  
each cell is further subdivided into solution  
and flux points. This is illustrated in Figure 1  
for two cells, j and j+1. For P+1 flux points, an 
 interpolating polynomial of degree P is fit to  
the flux values at each. However, the  
polynomial, 𝑓𝐷(𝑥), is often discontinuous  
across cell interfaces. To correct this, a new flux function, 𝐹 𝑥 , is generated in each cell and 
constrained to be continuous at cell boundaries. This is accomplished by adding a P+1-order 
correction function to 𝑓𝐷(𝑥) . It is chosen to approximate zero over much of the cell but to 
enforce the common upwind flux, 𝑓*, at cell boundaries. Many popular finite-element 
methodologies are recovered depending on the choice of this correction function. Finally, 
𝜕𝐹 𝜕𝑥  is estimated using the derivative of 𝐹(𝑥), and the formal order of accuracy can be 
increased by increasing P. This overall approach has been extended to three dimensions in the 
gFR code and a similar process is used for estimating diffusion terms in the governing 
equations. 
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Simulation Details 
Test cases are completed for approximately incompressible (i.e., a freestream Mach number of 
0.1) laminar flow over a flat plate as well as laminar channel flow over a backward-facing step. 
The correction function that recovers the discontinuous Galerkin method is utilized here with 
the Gauss points for solution and flux points. The third-order SSP Runge-Kutta method is used 
for integrating in time with locally-determined timesteps (CFL=0.1) to accelerate convergence. 
Both simulations use a uniform-velocity subsonic inflow and a subsonic outflow boundary 
condition.  
    The flat plate simulations are performed for a Reynolds number of 104 (based on plate 
length) and the plate is assumed to be isothermal. This boundary condition was found to be 
more stable than an adiabatic boundary condition. Multiple grids are used, closely modeled 
after grids from the International Workshop on High-Order Methods (HOW, for “high-order 
workshop”). These cases include a fluid region upstream of the start of the plate. A separate 
series of simulations are performed where the plate begins at the inflow boundary. 
    The laminar flow over a backward-facing step was modeled after the experimental set up of 
Armaly, et al. [4], shown from the side in Figure 2. Isothermal walls are specified at the top 
and bottom of the geometry. Two-dimensional simulations are performed at a series of 
Reynolds numbers (based on twice the upstream channel height, 2ℎ) from 100 to 1000. The 
utilized grid has 9700 cells that are preferentially clustered near the walls and the step. 

Results 
For both test cases, many more simulations were planned than were found to be possible. 
Only the lowest-accuracy cases with the coarsest grids converged. That said, the simulation 
results obtained can still be analyzed. 
    In the flat-plate simulations using the  
full-sized HOW grids, unphysical solutions  
are found near the front of the plate as  
shown in Figure 3. Upstream of the front 
 of the plate (𝑥 𝐿 = 0), the fluid is moving 
 faster near the slip wall at the bottom of  
the image than in the freestream. This  
artifact also affects the boundary layer  
as the fluid continues downstream. This is the motivation for shortened grids – to avoid the 
slip wall/isothermal wall interface. Despite this change, the shortened grids still produce fluid 
flows that have a velocity overshoot in the boundary layer, as shown in Figure 4. This may be 
related to the boundary condition formulations and their interaction at the inflow/wall 
interface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
    The results for simulations of the backward-facing step are shown next and are more 
promising. Figure 5 shows the reattachment length as a function of Reynolds number. 
Simulation results are compared with experimental and simulation results from Armaly et al. 
[4] and simulation data from Williams and Baker [6]. The reattachment length is defined as the 
distance between the step and the location where the partial derivative of the streamwise 
momentum with respect to the wall-normal direction is zero, at the wall. This location is 
estimated using linear interpolation between solution points. All of the simulation results 
show similar trends to those of the Armaly, et al. experiment until a Reynolds number of 
about 500. At this point, the experimental flowfield differs from the two-dimensional 
simulations. This is due to the limited spanwise extent of the experiment. However, the 
present results show qualitative agreement with those of the other simulations, with the 
reattachment length leveling off. Next, the velocity profiles at various streamwise locations are 
compared to the experiment from Armaly, et al. [4] and the simulation results from Chiang 
and Sheu [5]. These are shown in Figure 6 for a Reynolds number of 100. The gFR results are 
comparable to the other results and match those of Chiang and Sheu well through Re = 800.  

Figure 3. This figure shows contours of the axial velocity, u, normalized by the 
freestream velocity, U∞. x/L is the position in the axial direction, non-
dimensionalized by the length of the plate – the plate begins at x/L = 0. This 
representative case uses P = 2 and the coarsest grid tested. 

Figure 6. Axial velocity profiles at Re=100 and different streamwise locations, x/S. The upstream channel 
ends at x/S=0. The solid black line, dotted red line and red squares are the present results, Chiang and 
Sheu data [5], and Armaly, et al. experimental data [4], respectively. 

Conclusions 
Overall, the present results show that the gFR code is promising. However, much development 
work on the boundary conditions and the local time-stepping algorithms remains to be done. 
Both appear to be limiting the accuracy and grid resolution that can be utilized currently. This 
makes it difficult to make quantitative comparisons between simulation results and those in 
the literature. It is also expected that boundary conditions contributed to the unphysical 
velocity overshoot noted in the flat plate results.  
    Qualitatively, the data gathered for the backward-facing step simulations are in good 
agreement with other results and show promise for the future use of the gFR code. The 
predicted velocity profiles and reattachment lengths compared well with those in the literature 
for lower Reynolds numbers. For higher Reynolds numbers, the present simulations produced 
larger reattachment lengths than similar two-dimensional simulations, but comparable trends 
were noted. 
    In the future, once better boundary conditions are implemented, testing should include 
higher orders of accuracy and finer grids for both cases considered here. Furthermore, three-
dimensional simulations of the backward-facing step from Armaly, et al. would provide 
additional validation of the full gFR implementation. 
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Figure 1. A depiction of polynomial interpolation in the gFR code, showing 
the discontinuous and continuous fluxes within two cells, j and j+1. 

Figure 2. The geometry used for simulations of laminar channel flow over a backward-facing step. S is the 
height of the step and h is the upstream channel height. The flow is from left to right. The unstructured grid 
shown has approximately a third of the number of cells as the grid that is used here. 

…

Figure 5. Reattachment length (non-
dimensionalized by S) plotted versus the Reynolds 
number (based on twice the channel height). 

Figure 4. Velocity profiles for the full-sized (left) and shortened (right) grid cases. Profiles are 
shown at half the plate length and the full plate length. These are compared to the Blasius 
theory at the same position. The plots are shown with velocity on the x-axis and height above 
the wall on the y-axis. 


