Using the ($\mathrm{n}, 2 \mathrm{p}$) Reaction to Search for a Preexisting Nuclear $\Delta++$ Component

Kirby Runyon, Jeff De Young, Rachel De Young, Steve Wallace, and Mark Yuly.
Department of Physics, Houghton College, One Willard Avenue, Houghton, NY 14744

1. Abstract

The ${ }^{3} \mathrm{He}(\mathrm{n}, 2 \mathrm{p}) 2 \mathrm{n}$ and the ${ }^{4} \mathrm{He}(\mathrm{n}, 2 \mathrm{p}) 3 \mathrm{n}$ cross-sections are being measured as a means to explore the Δ^{++}contribution to the nuclear wave function. The incident neutron beam ranged betwee
200 and 500 MeV. Scattered protons passed through magnetic 200 and 500 MeV . Scatereded protons passed through magnetic
spectrometers centered 45° to the right and left of the beam lin spectrometers centered 45° to the right and left of the beam lir
Each spectrometer consisted of a thin ΔE scintillator, a drift Each spectrometer consisted of a thin $\Delta \mathrm{E}$ scintillator, a drift
chamber, a permanent bending magnet, a drift chamber, and a .tection barrier of three stacked scintillators.

2. Motivation

Traditional models of the nucleus that treat it as a non-relativistic system of nucleons do not completely explain the binding energies and the electromagnetic properties of nuclei. By the
1900s, theorists suggested the presence of a pre-existing $\Delta(1232)$ 1960 s, theorists suggested the presence of a pre-existing $\Delta(1232)$
particle in the ground-state nuclear wave function and that this Δ particle in the ground-state nuclear wave function and that this Δ
resonance might be important in nuclear structure. The Δ^{+1} has a resonance might be important in nuclear. structure. The Δ^{+t} has
mass of about 1232 MeV, spin and isospin of $3 / 2$, and $a+2 \mathrm{e}$
 ${ }^{3} \mathrm{He}(\mathrm{n}, 2 \mathrm{p}) 2 \mathrm{n}$ and the ${ }^{4} \mathrm{He}(\mathrm{n}, 2 \mathrm{p}) 3 \mathrm{n}$ crosss-sections are being measured at the Weapons Nuclear Research (WNR) faciity at Los Alamos Nuclear Science Center (LANSCE) in Los Alamos New Mexico.
There are two primary ways that the ${ }^{3} \mathrm{He}(\mathrm{n}, 2 \mathrm{p}) 2 \mathrm{n}$ and the ${ }^{4} \mathrm{He}(\mathrm{n}, 2 \mathrm{p}) 3 \mathrm{n}$ reactions may proceed. For a two proton nucleus, the reaction typically proceeds in two steps, as below.

In $\Delta \Delta^{-}$nucleus, the reaction may proceed in one step. Each reaction has a distinguishable kinematic signature allowing the
approximate $\Delta^{++}(\mathrm{n}, 2 \mathrm{p})$ contribution to be determined. There hav been previous investigations of the in the nucleus. Measurements such as those performed by Morris et al. (C.L. Morris et al., Phys. cet. B419, $25(1998)$) have looked at the Δ - component in the ${ }^{3} \mathrm{H}$, ${ }^{3} \mathrm{He},{ }^{5} \mathrm{Li},{ }^{1} \mathrm{Ti},{ }^{12} \mathrm{C},{ }^{13} \mathrm{C},{ }^{90} \mathrm{Zr}$, and ${ }^{208 \mathrm{P}} \mathrm{Pb}$ nuclei using the ($\left.\pi^{+}, \pi \mathrm{P}\right)$ reaction. Like the ($\mathrm{n}, 2 \mathrm{p}$) reaction, the ($\pi^{+}, \pi \mathrm{p}$) reaction will generally proceed in two steps, but with a pre-existing Δ particle in the nucleus it may proceed in one step. These e easurements indicate
$1-3 \% \Delta$ component of the nuclear wave function In 1996 and $1-3 \% \Delta$ component of the nuclear wave function. In 1996 and
1097 the ${ }^{3} \mathrm{He}(\mathrm{n} 2 \mathrm{P})$ 2n and the $4 \mathrm{He}(\mathrm{n} 2 \mathrm{p}$) 3 reactions were studied 1997 the ${ }^{3} \mathrm{He}(\mathrm{n}, 2 \mathrm{p}) 2 \mathrm{n}$ and the ${ }^{4} \mathrm{He}(\mathrm{n}, 2 \mathrm{p}) 3 \mathrm{n}$ reactions were sudied by our group of collaborators from MIT and Los Alamos National
Laboratory using a different setup at the same facility. Not enough Laboratory using a different setup at the same facility. Not enougt
events were detected to determine a statistically meaningful value events were detected to determine a statistically meaningful value
for $a \Delta^{++}$component. Together the $\left(\pi^{+} \pi^{\prime}\right)$ data
 nuclear wave function

Electronics

The electronics read in and processed the signals from the various detectors before sending them to the computer. A signal in one $\Delta \mathrm{E}$ detector and in both scintillator barriers triggered the electronics. This ensures that the particles particle. The trigger was vetoed if the beam or the CAMAC registers were off.

The outputs from the drift chambers were read into the computer using FERA modules. All other signals were read in using CAMAC modules. In the drift chambers, the electrons that drift to the wire cause pulses that go to each en
the wire. The time difference between when the pulses arrive at each end indicates which loop of wire the proton was near. The sum of the pulse tir
in gives the drift time. Using this information from the vertical and the horizontal wires, the position of the proton can be found.

3 Experimental Apparatus

 (which are charged particles) in an amount inversely proportional to their momenta.

The $\Delta \mathrm{E}$ detectors are thin plastic scintillators used to reduce background events. The coincidence of a signal in the $\Delta \mathrm{E}$ and a signal in the scintillator barrier most likely indicates a particle from the target. Neutrons are not likely to trigger the scintillator since neutrons cannot interact via Coulomb interactions and the Δ Es are very thin.

A pulsed $800 \mathrm{MeV}, 1 \mathrm{~mA}$ proton beam from the LANSCE linear proton accelerator (LINAC) strikes an unmoderated tungsten spallation target to produce a neutron beam with energies ranging from 0.1 MeV to approximately 800 MeV .

The protons deposit all their energy in the plastic scintillator barriers. Each barrier has a stack of three $10.1 \mathrm{~cm} \times 10.1 \mathrm{~cm} \times$ 106.5 cm scintillators with photomultiplier tubes to convert the light pulses into electrical pulse signals. The size of the pulse is proportional to the energy deposited in the scintillator, so it acts as a check for the energy calculations using the drift chambers.

The gaseous ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ targets are contained in conventional aluminum gas cylinders at 102.7 and 134.6 bar respectively.

The fission chamber monitors the neutron flux on the target. The fission chamber is lined with a fissile isotope which breaks apart when struck by neutrons. The fission fragments ionize a gas as they pass through the chamber. The freed electrons are attracted to a positively charged wire. The current varies with the number of neutrons so neutron flux can be monitored.

5. Momentum Analysis

In order to determine the positions of the drift chambers and scintillators, a code has been written which fits the offsets and distances to the straight-track trajectories produced when the magnets were removed. The code uses distances for the second planes of each drift chamber (c and d). Finally the code fixes a, b, c, and d at the fit best position and determines the offset for the rear scintillator, e . After all the offsets have been determined it then finds the best fit line to all four points and displays the uncertainty.

Figure 1
histogram of time differences showing the positions of
A histogram
7. Conclusion
${ }^{3} \mathrm{He}(\mathrm{n}, 2 \mathrm{p}) 2 \mathrm{n}$ and ${ }^{4} \mathrm{He}(\mathrm{n}, 2 \mathrm{p}) 3 \mathrm{n}$ data were taken during 2000 and are being analyzed. Our part of the analysis is focused on interpreting the drift chamber information to calculate the trajectories and momenta of the protons before and after they pass through the permanent magnet. Ultimately, theoretical predictions will be compared to this analysis and a determination of the nuclear Δ^{++} component hopefully made.

