

Tyler Kowalewski Houghton College, 4/19/21

Introduction to Nuclear Science: Cross-Sections

- Proportional to the probability of a given interaction occurring
 - Collisions and scattering
 - Nuclear interactions
 - Chemical Interactions

- Used as input data for models in
 - Astrophysics
 - Nuclear Energy
 - Early Universe/Big-Bang Physics

Introduction to Nuclear Science: Cross-Sections

 $^{2}H(d,n)^{3}He$

Typically, light-ion fusion cross-sections decrease rapidly as energy decreases.

Plot constructed using www.nndc.bnl.gov and data from Ref. [1,2,3].

Introduction to Nuclear Science: Cross-Sections

⁶Li(t,p)⁸Li

Where are the cross sections at lower energies?

Plot constructed using www.nndc.bnl.gov and data from Ref. [4].

Introduction to Nuclear Science: Accelerators

Assuming 1 μ A beam current, measuring 1,000,000 ⁷Li(t, α)⁶He reactions would take almost 2,800 years

Introduction to Nuclear Science: Thermonuclear Reactions

Controlled

Uncontrolle

Figure taken from Ref. [5].

Figure taken from nuclearweaponarchive.org.

Introduction to Nuclear Science: Controlled Thermonuclear Reactions

- Types of controlled thermonuclear fusion
 - Gravitational Confinement Fusion
 - Magnetic Confinement Fusion (MCF)
 - Inertial Electrostatic Confinement Fusion (IEC)
 - Inertial Confinement Fusion (ICF)

Introduction to Nuclear Science: ICF

Figure taken from Ref. [6].

Introduction to Nuclear Science: ICF

The targets are 0.8 mm in diameter, containing a mixture of deuterium, tritium, and possibly multiple dopants.

The Proposed Methodology: Experiment Timeline

The Proposed Methodology: Collection Methods

Ion numn Suctom

Getter System

The Proposed Methodology: Possible Isotopes

			Shot 39794 (50-50 DT, 11.8 keV)	Shot 77951 (1.5-98.5 DT, 18.3 keV)	
Reaction	Product Half-life	Reactant Abund.	Predicted Yield	Predicted Yield	Notes
³ H(t,g) ⁶ He	807 ms	³ H fill	Branching ratio of ~10 ⁻⁷ to ³ H(t,2n) ⁴ He gives	8 x10 ⁴	To ⁶ He g.s. only, excited states decay by 2n
⁶ Li(t,p) ⁸ Li	840 ms	7.6%	2-10´10⁵	4-16 x10 ⁵	TALYS + Abramovich et. al.
⁷ Li(t,a) ⁶ He	807 ms	92.4%	1-3´10 ⁵	1-4 x10 ⁵	TALYS + Abramovich et. al. To ⁶ He g.s. only, excited states decay by 2n
⁹ Be(t,a) ⁸ Li	840 ms	100%	2.3′10 ⁴	8 x10 ⁴	TALYS
⁹ Be(t,g) ¹² B	20.2 ms	100%	2.8	3.0	TALYS
¹⁰ B(t,p) ¹² B	20.2 ms	19.9%	78.3	923	TALYS
¹¹ B(d,p) ¹² B	20.2 ms	80.1%	372	1735	TALYS
¹⁵ N(d,p) ¹⁶ N	7.1 s	0.4%	0.10	2.0	TALYS

Theory: Nuclear Cross-Sections and Reaction Rate

$$N = \sigma \frac{N_1 N_2}{A} = \sigma(n_1 A d)(n_2 d)$$

$$R = \frac{N}{(Ad)t} = n_1 n_2 \sigma v$$

Theory: Maxwell-Boltzmann Distribution

$$dn = 4\pi n \left[\frac{m}{2\pi kT}\right]^{\frac{3}{2}} e^{-\frac{mv^2}{kT}} v^2 dv$$

$$dn = \frac{4n}{(2\pi M)^{\frac{1}{2}} (kT)^{\frac{3}{2}}} e^{-\frac{E}{T}} \left[\frac{E}{\nu}\right] dE$$

Theory: Average Reactivity

$$R = \int_{0}^{\infty} \sigma(E) n_{2} [v \, dn_{1}] = \int_{0}^{\infty} \sigma(E) n_{2} \frac{4n_{1}}{(2\pi MA)^{\frac{1}{2}} (kT)^{\frac{3}{2}}} e^{-\frac{E}{kT}} E \, dE$$

$$A [n_{1}] = \int_{0}^{\infty} \sigma(E) n_{2} \frac{4n_{1}}{(2\pi MA)^{\frac{1}{2}} (kT)^{\frac{3}{2}}} \int_{0}^{\infty} \sigma(E) e^{-\frac{E}{kT}} E \, dE$$

$$A [n_{1}] = \int_{0}^{\infty} \sigma(E) n_{2} \frac{4n_{1}}{(2\pi MA)^{\frac{1}{2}} (kT)^{\frac{3}{2}}} \int_{0}^{\infty} \sigma(E) e^{-\frac{E}{kT}} E \, dE$$

Theory: Yields

 $Y_{12} \propto R_{12} = f_1 f_2 \left(\frac{\rho}{\overline{m}}\right)^2 \langle \sigma v \rangle_{12}$

 $_{1J_{2}}(\sigma v)$ Y₁₂ 34

Theory: Calculating Cross-Sections

• S-Factor Extrapolation [7]

$$\sigma(E) = \frac{S(E)}{E} \exp\left(-\sqrt{\frac{E_G}{E}}\right)$$

- TALYS [8]
 - Includes many other relevant models

- R-Matrix Formalism [7]
 - Does not need data from cross-section of interest
 - Examines characteristics of other reactions that go through same compound nucleus

Experiment: Phoswich Detector

Particle Identification

- Removes the need for a second detector in the small geometry of the apparatus
- Allows for complex detector geometry

Experiment: Phoswich Detector

Experiment: 4π Phoswich Detector

• Large Internal Volume and solid angle for internal decays

• Can trap non-reactive products

 Total scintillator thickness of 18 mm

Experiment: 4π Phoswich Detector

• Large Internal Volume and solid angle for internal decays

• Can trap non-reactive products

 Total scintillator thickness of 18 mm

Experiment: 4π Phoswich Detector

Experiment: Pulse Separation and Data

 Pulse separated into dE and E components

 Trigger for digitalization generated

 FemtoDAQ records pulse heights of each component when triggered

Experiment and Analysis: ⁴¹Ar Experiment

Experiment and Analysis: ⁴¹Ar Experiment

Experiment and Analysis: ⁴¹Ar Experiment

Shot Number	Neutron Yield	T _{ion} (keV)	Detector	Shielding	FemtoDAQ Timeout	Note
96175	1.04×10 ¹⁴	9.28	4π Phoswich			FemtoDAQ crashed
96178			4π Phoswich			Trigger test, null shot
96179	1.34×10 ¹⁴	9.51	4π Phoswich			Relays failed to close
96180			4π Phoswich			Trigger test, null shot
96181	1.32×10 ¹⁴	8.44	4π Phoswich	none	30 sec	Good
96183			4π Phoswich	none	30 sec	FemtoDAQ error
96184	1.56×10 ¹⁴	10.64	4π Phoswich	none	0.2 sec	Good
96185	1.50×10 ¹⁴	8.68	4π Phoswich	lead	0.2 sec	Good
96186			Getter Det.			No FemtoDAQ trigger
96187			Getter Det.			Trigger test, null shot
96188			Getter Det.	lead	30 sec	Good

- Over 350,000 counts/s for 4π Detector
- Over 18,000 counts/s for Getter Detector

What issues are created by this high count rate?

What does this mean?

How can we address this?

4π Detector: 4 - 4.5 sec

Getter Detector: 0.2 sec

What is causing the warm-up time to be this long?

$$F(t) = N_0 e^{-\lambda_0 t} + N_1 e^{-\lambda_1 t} + N_2 e^{-\lambda_2 t} + B$$

Isotope	Half	Decay	Decay	Reaction	Thresh	CS (mb)	Source
	Life (s)	Const. (1/s)	Mode		old		
					(MeV)		
26 A]	6346	0 10923	FC B-	27 Al(n 2n) 26 Al*	13 546	8 48 at 14 1 MeV	Target
111	0.340	0.10725	ъс, μ-	m(n,zn) m	13.540	0.40 at 14.1 MCV	Chamber
				$^{18}O(n,\alpha)^{15}C$	5.29	7.6 at 14.5 MeV	Air, C in
15 C	2.449	0.28303	β-	${}^{14}C(n,\gamma){}^{15}C$	0	1.5 at 14.7 MeV	target
				¹⁵ N(n,p) ¹⁵ C	9.59	1.6 at 14.8 MeV	room
16 N	7.130	0.09722	β-	¹⁶ O(n,p) ¹⁶ N	10.25	42.0 at 14.1 MeV	Air

Experiment and Analysis: Simulating the Detectors

GEANT4 Simulations: Modeling particle interactions with the detectors

- Absolute Efficiency?
- How do background sources affect the 2-D histograms?

Experiment and Analysis: Simulating the Detectors

	Getter Det. Outside Det. Shot 96188	4π Det. Inside Det. Shot 96184	4π Det. Outside Det. Shot 96184	Getter Det. ²⁷ Al foil Shot 96188	Getter Det. ²⁷ Al bar Shot 96188
Calculated Product per shot	1.6×10 ^{9 16} N	1.1×10 ⁷¹⁶ N	1.6×10 ⁹¹⁶ N	[calc] ²⁶ Al	[calc] ²⁶ Al
Predicted nuclei per million	155 ¹⁶ N	4.8×10 ^{5 16} N	4.5×10 ³¹⁶ N	[calc] ²⁶ Al	[calc] ²⁶ Al
Predicted nuclei per shot	2.5×10 ^{5 16} N	5.4×10 ^{6 16} N	7.0×10 ^{6 16} N	[calc] ²⁶ Al	[calc] ²⁶ Al
	(at t= 0.2 s)	(at t= 30 s)		(at t= 0.2 s)	
Detected decays expected in 1ms	23 ¹⁶ N	29 ¹⁶ N	37 ¹⁶ N	[calc] ²⁶ Al	[calc] ²⁶ Al
Detected decays measure in 1 ms	~18 ¹⁶ N	~120 ¹⁶ N	~120 ¹⁶ N	[calc] ²⁶ Al	[calc] ²⁶ Al

Summary

⁴¹Ar Experiment

- Created a radioactive, inert gas
- Captured and contained the gas within the 4π Detector's inner volume
- Successfully identified and measure the decay of a radioactive inert gas

LLE Ride-Along

- Successfully tested relays and electronics behavior after an ICF implosion
- Initial estimate of background rate
- Simulated detector behavior

Future Work: Exploding Wire Experiment

What is the collection fraction of each collection method?

Future Work: Exploding Wire Experiment

What is the collection fraction of each collection method?

Reaction	Reaction Threshold (MeV)	Reactant Natural Abundance (%)	Approx. Cross-Section (barns)	Product Half-Life (s)	Product Beta End Point Energy (MeV)	Yield (Total Number of Product Nuclei)	
Deuteron Reaction: Deuteron beam 10 nA, Deuterons/second = 6.25×10^{10} , 2 MeV							
²⁷ Al(d, p) ²⁸ Al	0.0	100	1.5 x 10 ⁻¹	134.7	2.8	3.3 x 10 ⁷	
⁶⁵ Cu(d,p) ⁶⁶ Cu	0.0	31	6.5 x 10 ⁻²	307.2	2.6	5.2 x 10 ⁶	
Neutron Reaction: Deuteron beam 10 nA, Deuterons/second = 6.25 x 10 ¹⁰ , 2 MeV Neutron Energy = 5 MeV, neutrons/second = 3.87 x 10 ⁶							
¹⁹ F(n, α) ¹⁶ N	1.6	100	2.1 x 10 ⁻¹	7.1	4.2	1.6 x 10 ⁴	
⁵⁵ Mn(n, p) ⁵⁵ Cr	1.9	100	2.0 x 10 ⁻²	209.8	2.6	2.6 x 10 ⁵	
²⁷ Al(n, p) ²⁷ Mg	1.9	100	2.0 x 10− ³	567.4	1.7	1.3 x 104	

References

[] A. Eddington, The Scientific Monthly, 11, 297 (1920) [] A. Eddington, Monthly Notices of the Royal Astronomical Society, 77, 16 (1916). [6] L. Gresh, R. McCrory, J. Soures, Inertial Confinement Fusion: An Introduction, (Laboratory for Laser Energetics, 2009). [] J. Melendez and I. Ramirez, Astrophys. J. 615, L33 (2004). [] M. Asplund et al., Astrophys. J. 644, 229 (2006). [] M. Kang, Y. Hu, H. Hu, and S. Zhu, Journal of Cosmology and Astroparticle Physics 2012, 011 (2012). [4] S. N. Abramovich et al., Bull. Russian Academy of Sciences – Physics, 50, [1] 62 (1986). [1] A. S. Belov, V. E. Kusik, Yu. V. Ryabov, Nuovo Cimento A 103 (11), 1647 (1990). Reg ID 207277788 [2] V. A. Davidenko et al., Soviet Atomic Energy, Supplement 5, 7 (1957). [3] A. S. Ganeev et al., Soviet Atomic Energy, Supplement 5, 21 (1957). Reg ID 207277683 [] International Atomic Energy Agency, Decommissioning of Particle Accelerators. (2020). [] Laboratory for Laser Energetics, Advanced Tritium Recovery System, LLE Review, 89 (2001). [] United States Department of Energy, United States Nuclear Tests: July 1945 through September 1992. (1994) [5] University of Wisconsin-Madison, Inertial Electrostatic Confinement Fusion, (2014) https://iec.neep.wisc.edu/publications.php [] K. Cook, Measurement of Low-Energy Nuclear Cross Sections Using Inertial Confinement Fusion, (Houghton College, 2019). [] K. Sharp, F. Matschinsky, Entropy, 17, [4] 1971 (2015). [7] H. S. Bosch, G. M. Hale, Nucl. Fusion, 32, 611 (1992). [] D. T. Casey, Diagnosing Inertial Confinement Fusion Implosions at OMEGA and the NIF Using Novel Neutron Spectrometry, (Massachusetts Institute of Technology, 2012). [8] S. Hilaire, TALYS: A Tool to go from theoretical modeling of nuclear reactions to evaluations, (CEA, DAM, DIF F-91297 Arpajon, France). [] A.J. Koning, S. Hilaire and M.C. Duijvestijn, "TALYS-1.0", Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, editors, O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S. Leray, EDP Sciences, 211 (2008). [] S. N. Abramovich, B. Y. Guzhovskij, V. A. Zherebtsov, and A. G. Zvenigorodskij, International Nuclear Data Committee Report INDC(CCP)-326/L+F, (1991). [] R. W. Michelmann, J. Krauskopf, J. D. Meyer, K. Bethge, Nucl. Instrum. Methods in Physics Res, 51, 1 (1990). [] J. W. Engle, G. W. Severin, T. E. Barnhart, L. D. Knutson, R. J. Nickles. Applied Radiation and Isotopes, 70, 355 (2012).