A Preliminary Design For A Small Cyclotron

Sharon Tuminaro, Barry King, Jacob Roloson, and Mark Yuly

Houghton College Physics Department

Why Build A Cyclotron?

- Educational purposes
- Radiation source
- Ideal for small laboratories

What Is A Cyclotron?

Theory

Lorentz Force $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

mv

qBr

m

r

E

.

Circular Motion

Theory

T

The Period of Revolution

 $2\pi r$

V

a constant!

Theory

Kinetic Energy: $T = \frac{1}{2} mv^2$

 $T = \frac{q^2 B^2 r^2}{2m}$

Energy Calculations

Protons $T_p = 37 \text{ keV}$ $T_{p,enhanced} = 88 \text{ keV}$ Deuterons $T_d = 19 \text{ keV}$ $T_{d,enhanced} = 44 \text{ keV}$

 $T = \frac{q^2 B^2 r^2}{2m}$

r = 6.2 cm

 $\mathbf{B} = 0.49 \text{ T} \qquad \mathbf{B}_{\text{enhanced}} = 0.75 \text{ T}$

Chamber Design

Vacuum Pump

- Rotary Fore Pump
- Liquid Nitrogen Cold Trap
- Water-Cooled Diffusion Pump

Vacuum Pump

and the second sec

Conclusions

- Complete vacuum
- Begin chamber assembly
- Commence testing of system