

Simulating the Response Matrix of a Microcalorimeter

Adam Brown and Katrina Koehler Rochester Symposium for Physics Students 15 April 2023

The Systematic Problem

H. Rotzinger, et al., J Low Temp Phys, 2008.

Discrepancy:

➤ Measurements ≠ Theory Prediction

Weak Nuclear Decay: Beta

Beta Decay: $n \rightarrow p + e^- + \bar{\nu}_e$

Reaction Energy of Beta Decay

Reaction Energy = Q Value =
$$(M(^{N}X) - M(^{N}Y))c^{2}$$

Distribution of Q Value Among Decay Products

Daughter Energy Components

Measuring Reaction Energy

Beta Spectrum

Beta Spectrum

600

• Only rest mass remains

400

• Upper Limit: <0.8 eV

Q Value Decay Energy

 m_v

Measured

Importance of Beta Spectrum Shape

- Determining neutrino rest mass
 - Upper Limit: <0.8 eV
- Understanding Weak nuclear force

Decay Energy Spectroscopy (DES)

Low Temperature Detectors: Microcalorimeters

- Thermalize decay energy
- Sensitive thermometers use superconducting state
 - Small $\Delta T \rightarrow$ Measurable change in R

Physical Measurement

 $0.7 \text{ mm} \times 1.6 \text{ mm}$ absorber

Energy Resolution

•

High energy resolution → more detail in measurement → understand beta spectrum structure

H. Rotzinger, et al., J Low Temp Phys, 2008.

Energy Escape

- Location
- Distribution
- Defects in Source
- Absorber size
- Particle type
- Absorber material
- Energy

EGSnrc: A Monte Carlo Approach

- Monte Carlo Method
- EGSnrc for Particle Transport
 - Simulate energy deposited in absorber

Compton Scattering

Photoelectric Absorption

Pair Production

EGSnrc: A Monte Carlo Approach

Monoenergetic Source Simulations

Finding the Detector Response: Escape

- 1 MeV monoenergetic beta source in $0.6 \times 0.6 \times 0.6 \text{ mm}^3$ Au absorber
- Finer binning on histogram → details on spectrum
 - STRUCTURE
- Highlighted Peak:
 - 2% of electrons are only depositing 930 keV as opposed to 1 MeV
 - 70 keV is escaping absorber
 - Corresponds to Au X-ray fluorescence

Detector Response

Heat Map of Response Matrix

19

- 70 - 60 - 50

40

- 30

- 20 - 10

What Next?

• Monoenergetic electron sources?

EGSnrc Assumptions

- Perfect heat transfer
 - No heat lost to environment
 - Detector gain is constant
- No time dependence

Beta Spectra

- Histograms of total reaction energy minus energy of neutrino
 - Neutrino has low likelihood of interacting with matter

Low Energy Neutrino:

$$KE(\bullet^{e^{-}}) + E(\overset{NY}{\bullet}) = Q \text{ Value} - KE(v_e) = \qquad \Rightarrow \overset{More Reaction}{Energy Measured}$$
High Energy Neutrino:

$$KE(\bullet^{e^{-}}) + E(\overset{NY}{\bullet}) = Q \text{ Value} - KE(v_e) = \qquad \Rightarrow \overset{Less Reaction}{Energy Measured}$$

Entranger griddioblette

Importance of Beta Spectrum Shape

x-axis: Energy of all products without neutrino (or Q Value minus energy of neutrino

y-axis: Frequency of energy occurring

Some other notes maybe

Determining neutrino rest mass Understanding Weak nuclear force

Color Palette

