γ Vibrational Band in ⁷⁰Ge

S.I. Morrow¹, R.A. Haring-Kaye², R.M. Elder², S.L. Tabor³, V. Tripathi³, P.C. Bender³, N.H. Medina⁴, P. Allegro⁴, and J. Döring⁵ ¹Houghton College, ²Ohio Wesleyan University, ³Florida State University, ⁴University of São Paulo (Brazil), ⁵Bundesamt für Strahlenshutz (Germany)

Fig. 7: The proposed ¹²Ge level scheme based on this project's analysis. Black transitions were seen in the most recent ¹²Ge analysis and confirmed in this analysis. Blue transitions were seen in a β decay analysis for ¹²Ge (put not in the most recent level scheme) and confirmed in this analysis. Red transitions are need to this analysis.

Fig. 8: The static moment of inertia (MOI) is the quantum mechanica nt of inertia. The sharp upward trend of a to the cl ma band is a good indication

Fig. 9: The staggering parameter S(I) is a sensitive measure of the shape of a nucleus. Above is a comparison of S(I) between ¹⁰Ge and nearby germanium isotopes. The fact that ¹⁰Ge is in phase with other γ soft nuclei is a solid

 $S(I) = \frac{[E(I) - E(I-1)] - [E(I-1) - E(I-2)]}{[E(I-1) - E(I-2)]}$

0.40

0.20

0.00

-0.20

0.30

Fig. 10: Total Routhian Surface plots model the potential energy of the nucleus on a polar plot that represents the extent of deformation in the radial direction and the degree of axial asymmetry in the angular direction. The black dot is the point of lowest potential energy. These plots correspond to the lowest positive-panity configuration at two rotational frequencies, as indicated in the figure.

VII. Acknowledgments

This research was funded by the National Science Foundation through Grants No. PHY-1262850 (Research Experience for Undergraduates program at OWU) and PHY-04-56463 (FSU).

