γ Vibrational Band in ${ }^{70} \mathrm{Ge}$

S.I. Morrow ${ }^{1}$, R.A. Haring-Kaye ${ }^{2}$, R.M. Elder ${ }^{2}$,S.L. Tabor 3, V. Tripathi ${ }^{3}$, P.C. Bender ${ }^{3}$, N.H. Medina ${ }^{4}$, P. Allegro ${ }^{4}$, and J. Döring ${ }^{5}$

 ${ }^{1}$ 'Houghton College, ${ }^{2}$ Ohio Wesleyan University, ${ }^{3}$ Florida State University, ${ }^{4}$ University of São. Paulo (Brazil), ${ }^{\text {sBundesamt für Strahlenshutz (Germany) }}$

VI. Results

Coincidence relationships and measurements were used to construct the leve scheme (Fig. 7) and, in particular, were used to extend the proposed γ vibrational band.

The static moment of inertia (Fig. 8) supports the proposition that the newly extended band is the result of γ vibrations based on the trend compared to nearby germanium isotopes. Similarly, Fig. 9 shows the staggering parameter $\mathrm{S}(\mathrm{I})$ which clearly indicates that ${ }^{70} \mathrm{Ge}$ is γ soft at low spin like many other nearby even-even germanium isotopes. Total Routhian Surface plots (Fig. 10) tend to support this conclusion based on the relative insensitivity of the potential energy minimum on the γ degree of freedom in the lowest positive- parity configuration.

$$
\text { Static MOI }{ }_{(y \text { Bands })}
$$

VII. Acknowledgments This research was funded y the National Scienc by the National Scien Grants No. PHY-1262850 (Research Experience for Undergraduates program at OWU) and PHY-04-56463 (FSU)

