Using Machine Learning Techniques to Identify Soft Spots in Amorphous Materials

Emily Morrow Sam Schoenholz Amit Shavit Andrea Liu Rob Riggleman Houghton College University of Pennsylvania University of Pennsylvania University of Pennsylvania University of Pennsylvania

Localized areas of rearrangement

Crystals have defects Amorphous materials have soft spots

Identify soft spots

Use geometrical descriptors Angular and radial

Radial descriptor

$$S(i;r,\sigma) = \sum_{j} e^{-(R_{ij}-r)^2/\sigma^2}$$

Angular descriptor

$$Q(i;\xi,\lambda,\zeta) = \sum_{j,k} e^{-(R_{ij}^2 + R_{ik}^2 + R_{jk}^2)/\xi} (1 + \lambda \cos \theta_{ijk})^{\zeta}$$

Begin with a training set

A set of particles Know which are hard/soft

Calculate the n-descriptors

Determine angular and radial quantities for the set

Summarize n-descriptors

Plot each particle in n-dimensional space Each axis represents one of the n-descriptors

Construct a hyperplane

Separate hard and soft particles

Analyze new data

Plot data in the hyperplane Calculate softness field

Our system

Pillar with aspect ratio of 2 42410 particles 5mers (polymer chains) Strained at a constant rate

Our system

Softness vs Z (average of 63 pillars)

z-axis

Further research

Look at radius as a function of the length of the pillar Analyze the fast cooled pillars and the isoconfigurational ensemble