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Abstract 

The measurement technique of Decay Energy Spectroscopy (DES) utilizes high-energy 

resolution (7.5±0.2 eV FWHM at 6539 eV) [ 1 ] low temperature microcalorimeters to 

measure the total energy of a decay from an embedded radioactive source. DES spectra are 

histograms of the total decay energy thermalized in the absorber. Some of this energy is lost, 

largely due to decay products escaping the absorber or energy stored in metastable states 

(the latter depends on source preparation and is not considered in this work). This results 

in a measurement of energy that is lower than the decay energy. The escape probability is 

not constant as a function of initial decay energy but is dependent on the absorber material 

and the source’s energy, type, location, and distribution—all of which form what we call the 

detector response. In this work, the response matrix for a microcalorimeter is built using 

EGSnrc—a Monte Carlo particle transport software—to simulate the energy deposition of a 

point source of monoenergetic beta particles ranging from 10 keV to 2 MeV. This response 

matrix may be used to deconvolve the detector response from a DES measurement so 

systematic uncertainty can be reduced. This will result in a more precisely known beta decay 

shape, important for fields such as nuclear medicine and testing theoretical descriptions of 

beta decay at low energies.   
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Chapter 1 

INTRODUCTION 

1.1. What Are Beta Decay and Electron Capture? 

1.1.1. Original Experiments and Discovery 

The beginning of the 20th century marked a notable expansion of the scientific community’s 

understanding of the atomic nucleus, especially regarding nuclear decay. After the initial 

discovery of radiation in 1896 by Henri Becquerel [2] using uranium—and subsequent 

experimentation carried out by Marie Curie exploring the basic properties of radioactive 

materials—the process of classifying different types of radiation began. Ernest Rutherford  

noticed changes in electrical current when covering different uranium salts (uranium sulfate 

and uranium oxide) with varying thicknesses of metal [3]. Rutherford noticed the current 

was significantly reduced with only 2 × 10−3 cm of aluminum, but the current did not reduce 

appreciably until the thickness was 6 × 10−3  cm. This led him to conclude there are two 

types of radioactive emissions from uranium, which he called alpha rays and beta rays, 

differentiated by their penetrating power. Alpha rays have very low penetrating power and 

can be blocked by a thin sheet of paper, and beta rays have more penetrating power but are 

still stopped by a thin sheet of aluminum. It was later shown by Becquerel in 1900 [4] that 

the beta rays were actually electrons by comparing their mass-to-charge ratios, using the 

same method that J. J. Thomson used to originally identify the electron: deflecting a cathode 

ray with an electric field. Because the beta rays deflected in the same way as the electrons 

deflected, Becquerel concluded that beta rays were electrons.  

However, further study of beta decay led to an interesting discrepancy that would become 

fundamental to our understanding of nuclear structure and fundamental particles. In alpha 

and gamma decay, the alpha particle or gamma ray emitted is monoenergetic:  dependent on 

the mass difference of the parent and daughter nucleus or the nuclear deexcitation between 

nuclear energy levels, respectively. Thus, it seems a reasonable conclusion that beta particles 

emitted from beta decays should exhibit the same property. However, James Chadwick 

showed in his 1914 experiment that the beta particle was emitted with a continuous 
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spectrum of energies [5] Charles D. Ellis and William A. Wooster further provided proof of 

the continuous beta decay spectrum with their investigation of Radium E (Bismuth-210) [6], 

as shown in Figure 1.  

 

Figure 1. Continuous distribution of beta particle energies emitted from 
Radium E (210Bi) decay.  Instead of beta decays emitting monoenergetic beta 
particles, a continuous spectrum of energies is allowed. This seemed to 
violate the conservation of energy and momentum, providing motivation for 
scientist to reconsider their understanding of nuclear decay. Taken from Ref. 
[6]. 

From this discovery arose a supposed contradiction: if beta decay was simply electron 

emission, then the energy should have a single defined value due to the conservation of 

momentum and energy. If the only decay products were the daughter nucleus and beta 

particle, then they would have equal and opposite momenta after the decay. This would 

result in a monoenergetic beta spectrum. This measured continuous spectrum of beta 

emission energies seemed to violate the conservation of energy.  

It was not until 1930 that progress on this beta spectrum issue was made when Wolfgang 

Pauli proposed the existence of another particle emitted during beta decay that had thus far 

been undetected [7]. This particle would account for the missing energy seemingly lost, since 

momentum conservation with three particles does not have a single solution. He 
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characterized this particle to be neutral, very low mass, spin-
1

2
, obey the exclusion principle, 

and have extremely high penetrating power. Many of these assumptions were informed by 

the fact that this particle had never before been detected. The mass had to be much smaller 

than that of a proton, with a first limit on the particle’s mass of less than 1% the mass of the  

proton [7]. This is because the Q value, or mass difference between the parent and daughter 

nucleus, is known for a beta decay. If the particle were more massive, the difference between 

the Q value and the measured energies would be much more pronounced, as a noticeable 

amount of the decay energy would be taken away by the unseen particle in the form of mass. 

The same goes for its neutral charge: if it were charged, its electromagnetic interactions with 

the environment would be noticed, and an additional charged product would violate the 

conservation of charge of the nuclear reaction. 

Pauli’s proposed particle would factor into Enrico Fermi’s landmark theory of beta decay 

[8,9] published in 1934, where he posited the existence of the neutrino. He was able to 

demonstrate that the mass of the neutrino must be either zero or very small in comparison 

to the mass of an electron. He did so by determining the theoretical shape of a beta spectrum 

and examining the effect of different neutrino rest masses on the shape of the curve near the 

endpoint energy of the reaction and discovered that the greatest agreement with empirically 

found curves was when the mass of the neutrino was zero (see Figure 2).  
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Figure 2. Comparison of different values of 𝜇  (neutrino rest mass) on the 
shape of a beta spectrum near the endpoint energy 𝐸0 . The greatest 
agreement with physical measurements was when 𝜇 = 0, suggesting the rest 
mass of the neutrino is either zero or extremely low. Understanding the 
precise shape of measured beta spectra, especially near the endpoint energy, 
allows for experimental determination of the neutrino rest mass. Taken from 
Ref. [9]. 

One problem with this theory is that experimental validation of the existence of the neutrino 

seemed to be nearly impossible, due to it having such weak interactions with matter. In 1956, 

neutrinos were finally detected in the Cowan-Reines experiment [10], which was based off 

the unique signatures that occur when a neutrino does interact with a proton. Despite the 

reaction probability being extremely low, Fermi’s theory predicts that an electron 

antineutrino could interact with a proton to create a neutron and a positron. Positron 

annihilation with an electron creates two coincident gamma rays, and neutron capture by 

certain nuclei will result in an excited nuclear state, which quickly de-excites via the emission 

of a gamma ray. Detecting the coincidence of these two events provides a method to validate 

the existence of the neutrino particle. To achieve this, a nuclear reactor was used to provide 

a large neutrino flux, which would theoretically come from the large number of beta decays 

of daughter nuclei following the fission of 235U. The neutrino flux was incident upon two 

tanks each containing 200 L of water, which acted as sources of huge numbers of protons 

(1.3 × 1028 ), increasing the chances of an interaction occurring. To absorb the product 

neutron, 40 kg of cadmium chloride (CdCl2) was dissolved in the water. Cadmium is an 

effective neutron absorber, and after neutron capture occurs, the product nucleus is in an 

excited nuclear state that emits a gamma ray to de-excite, shown by Equation (1).  

 𝑛 + 108Cd → 109Cd* → 109Cd + 𝛾 (1) 

 Liquid scintillators between the water tanks were used for the detection of the gamma rays 

from both positron annihilation and neutron capture. After months of data collection, the 

experimental data showed evidence of neutrino existence, with a rate of three interactions 

occurring per hour.  
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1.1.2. Theory of Beta Decay and Electron Capture 

Our current understanding of beta decay and electron capture stems from these historical 

discoveries. Beta decay is a type of radioactive decay where a beta particle (𝛽− or 𝛽+) is 

emitted from the nucleus. In 𝛽− decay, a neutron (𝑛) within a nucleus is converted into a 

proton (𝑝) and an electron (𝑒−) and electron antineutrino (�̅�𝑒) are emitted, as shown in 

Equation (2), 

 𝑛 → 𝑝 + 𝑒− + �̅�𝑒 . (2) 

Figure 3 depicts a 𝛽− event, where an element with atomic number X and mass number N 

decays to an element with the same mass number, but an atomic number increased by one 

to Y.  

 

Figure 3. Depiction of beta decay.  (Left) The parent nucleus has N nucleons. 
Through 𝛽− decay, the highlighted neutron decays into a proton, maintaining 
the mass number but increasing the atomic number of the nuclei by one, and 
in the process releasing an 𝑒− and �̅�𝑒. (Right) The red arrows indicate that 
the decay products have momentum. The kinetic energy of the products can 
be measured to form a 𝛽− spectrum.  

 

In a decay similar to 𝛽− decay, 𝛽+ decay is the process whereby a proton is converted to a 

neutron, emitting an anti-electron (positron) and an electron, as seen in Equation (3):  
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 𝑝 → 𝑛 + 𝑒+ + 𝜈𝑒 , (3) 

where 𝑒+ is a positron and 𝜈𝑒 is the electron neutrino. Both forms of 𝛽 decay are facilitated 

by the weak nuclear force.  

Electron capture is another example of weak decay in nuclei. During electron capture, a 

proton within the nucleus absorbs one of the atomic electrons and is converted into a 

neutron, resulting in the emission of an electron neutrino. Electrons in the s orbital are most 

likely to be subject to electron capture, while those in orbitals with higher angular 

momentum, such as p or d, are less likely.  

 𝑝 + 𝑒− → 𝑛 + 𝜈𝑒 . (4) 

See Table 1 for a more detailed description of the different conservation laws for beta decays 

and electron capture. In addition, charge conservation, baryon number, and lepton number 

are also conserved. The baryon numbers of nucleons are 1, while electrons and positrons 

have baryon numbers of 0. The lepton number of electrons and neutrinos is 1, while their 

antiparticles (positrons and antineutrinos) have a lepton number of -1; nucleons have a 

lepton number of 0. 

Table 1: Conservation Laws in Different Types of Weak Decays 

    𝛽− Decay: 

𝑛 → 𝑝 + 𝑒− + �̅�𝑒 

   𝛽+ Decay: 

𝑝 → 𝑛 + 𝑒+ + 𝜈𝑒 

Electron Capture: 

𝑝 + 𝑒− → 𝑛 + 𝜈𝑒 

Electric Charge 0 = 1 − 1 + 0 1 = 0 + 1 + 0 1 − 1 = 0 + 0 

Baryon Number 1 = 1 + 0 + 0 1 = 1 + 0 + 0 1 + 0 = 1 + 0 

Lepton Number 0 = 0 + 1 − 1 0 = 0 − 1 + 1 0 + 1 = 0 + 1 

1.2. Decay Energy Spectra 

1.2.1. Measuring Decay Energy Spectra 

Decay Energy Spectroscopy (DES) is a measurement technique where a radioactive source 

is embedded inside an absorber, which is thermally coupled to a very sensitive thermometer. 

In DES, the total energy of decay products (i.e., X-rays, gamma rays, and kinetic energy of the 

daughter nucleus and electrons) are thermalized within the absorber. The thermalization of  



12 
 

the decay energy of a source internal to an absorber is depicted in Figure 4. The energy from 

all the decay products is thermalized within the time period of thermal diffusion in the 

detector, creating a single change in temperature for the entire decay energy, rather than for 

the energy of individual decay products. However, this excludes energy of radiation that 

escapes the absorber, such as neutrinos and high energy photons. In contrast, if the source 

were external to the absorber, only the energy of a single decay product (i.e., X-ray, 

𝛼 particle, electron) would be thermalized.  

 

Figure 4. Schematic of the internal measurement mode for an ideal absorber.  
When the source decays, all energies of all decay products are thermalized 
by the absorber and converted to heat, causing the temperature to increase.  

This change in temperature is measured with a microcalorimeter: a type of Low 

Temperature Detector (LTD). There are different types of microcalorimeters, such as 

transition-edge sensors (TES) or metallic magnetic calorimeters (MMC), but all are designed 

to measure extremely small changes in temperature by exploiting the electrical or magnetic 

properties of materials transitioning between superconducting and normal phases. When 

operated near the critical temperature of the phase transition, any small change to a 

material’s temperature results in a measurable change in some other property, such as 

resistance for TESs or magnetization for MMCs. When this change is read out electronically, 
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it results in a pulse whose amplitude is proportional to the energy deposited from a single 

decay. A decay energy spectrum is a histogram of many of these pulses.  

DES offers not only excellent energy resolution, but also has the advantage of measuring total 

decay energy independent of decay path. This results in a simplified spectrum, making 

analysis of total activity by isotope less prone to systematic bias, important for determining 

radionuclide composition. This effect is shown in Figure 5.  

 

Figure 5. Comparison of different methods of spectroscopy for the alpha 
decay of 239Pu and 240Pu.  The red region shows conventional alpha-particle 
spectroscopy, where only the energy of an emitted alpha particle is 
measured. The black region shows a DES measurement of each isotope, 
peaking at total decay energy for the alpha decay. Taken from Ref. [11]. 

1.2.2. Physical Measurements and Interpretations 

Several DES projects measuring weak decays with MMCs have been developed. These 

include MetroMMC for exploring electron capture schemes [12] and MetroBeta for beta 

spectrum shape [13, 14]. MetroBeta studied four beta decaying radionuclides: 151Sm (1st  

forbidden non-unique; Q = 76.4 keV), 14C (allowed; Q = 156.476 keV), 99Tc (2nd  forbidden 

non-unique; Q = 293.8 keV), and 36Cl (2nd  forbidden non-unique; Q =  709.53 keV). Of these, 

just the beta spectrum of 14C has been measured (See Figure 6). 
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Figure 6. Beta spectrum of 14C, measured with an MMC (blue), and calculated 
spectrum using the code BetaShape (red).  Three discrete photon lines from 
a 109Cd source external to the detector were used for energy calibration. The 
discrepancy between experimental and theoretical spectra in the low-energy 
region highlighted motivates further exploration into interpretation of 
physical microcalorimeter measurements. Figure taken from Ref. [13].  

The energy resolution achieved (1 keV FWHM at 22 keV) was severely degraded by pile-up. 

Results showed good agreement with the theoretical beta spectrum, except in the low-

energy range where most of the histogram bins were overpopulated compared to prediction. 

This discrepancy is possibly a result of the energy of certain events not being completely 

thermalized, resulting in a lower energy deposited in the detector. Other possibilities include 

imperfect heat transfer between the absorber and the microcalorimeter, resulting in 

nonlinear energy loss, or a lack of fidelity in the theoretical prediction of the beta spectrum 

for low energies. Determining the effect of energy escape on microcalorimeter 

measurements of 𝛽− decay will enable more precise determinations of the 𝛽− spectrum for 

the MetroBeta project and other beta spectroscopy experiments.  

Analytically determining the probability of energy escape from an absorber is nearly 

impossible. This is because the escape probability is not constant as a function of initial decay 

energy but is dependent on the absorber’s material and size, as well as the source’s energy, 

type, location, and distribution. This work will simulate the energy deposition of beta 
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particles within an absorber using EGSnrc—a Monte Carlo simulation software—in order to 

quantify the escape probability and the goal of removing this effect from microcalorimeter 

measurements.  

By iterating through monoenergetic electrons ranging from 10 keV to 2 MeV, the response 

matrix for an MMC detector can be constructed. This response matrix may be used to 

deconvolve the detector response from a DES measurement, which will reduce the 

systematic uncertainty in MMC measurements of beta spectra, particularly for low energies.   
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Chapter 2 

DETECTORS 

2.1. Low Temperature Detectors 

The field of low temperature calorimetry and cryogenic detectors first emerged in 1984 out 

of a need for enhanced sensitivity from detectors, specifically to investigate fundamental 

issues in nuclear physics, such as the mass of the electron neutrino. When compared with 

semiconductor detectors, like High Purity Germanium(HPGe) or Silicon, LTDs have vastly 

superior energy resolutions (see Figure 7), making them a desirable choice for many 

experiments. The energy resolution (∆𝐸) of a detector is proportional to its temperature (T) 

times the square root of its heat capacity (C), as shown in Equation (5). 

 ∆𝐸 ∝ 𝑇√𝐶, (5) 

This holds throughout the energy range a detector is applied to. While semiconductor 

detector energy resolution approaches a physical limit of 8-10 keV at full-width-half-

maximum (FWHM) for 5 MeV alpha particles, which is a resolving power of around 500 [15], 

low temperature 𝛼 detectors yield resolutions less than 1 keV FWHM for 5.3 MeV alphas 

(resolving power of 5300) [16]—an order of magnitude better energy resolution. X-rays 

energy resolution of ∆𝐸𝐹𝑊𝐻𝑀 = 3.4 eV at 6.5 keV has been demonstrated [17, 18], as has 

gamma energy resolution of 22 eV FWHM at 97.43 keV [19]. The high energy resolution of 

microcalorimeters can be exploited to study both electron capture and 𝛽− decay [20,21,22], 

allowing for extremely precise measurements of the spectral shape.  
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Figure 7. Comparison of resolving capabilities of a MMC (green) and a HPGe  
(red) gamma measurement.  The microcalorimeter can resolve the gamma 
peaks from169Yb and 168Tm, while the HPGe detector cannot. Taken from Ref. 
[23]. 

2.1.1. Principles of Microcalorimeters 

The detector is composed of three parts: an absorber, a calorimeter, and a heat sink [24]; 

This ideal system is shown in Figure 8. For any measurement to be made, a particle must 

deposit its energy in the absorber in the form of heat. The particle may either be incident 

upon the absorber, or the particle may originate from a decay event within the absorber. As 

the absorber thermalizes all of the particle’s energy, the absorber’s temperature increases. 

A thermal link to an extremely sensitive calorimeter allows for the heat of a single decay to 

be measured via the intrinsic temperature change in the absorber. This entire system is then 

weakly linked to a heat sink, allowing the absorber and calorimeter to slowly return to a 

baseline temperature. A good absorber has high stopping power to ensure that no energy 

from events escapes, and it has a low heat capacity so that there is a greater change in the 

absorber’s temperature from the heat of a single event. 
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Figure 8. An ideal calorimeter.  On the left, an absorber with heat capacity C 
is connected to a heat sink of temperature 𝑇0 via a thermal link with thermal 
conductivity G. On the right, an instantaneous input of energy 𝐸0 will raise 
the calorimeter’s temperature by ∆𝑇 = 𝐸0 𝐶⁄ , and it will then decay back to 
its initial temperature with a time constant 𝜏 = 𝐶 𝐺⁄ . Figure modified from 
Ref. [24]. 

2.1.2. Cryogenics 

Both transition-edge sensors and metallic magnetic calorimeters require cryogenics for 

operation. The first reason is to reduce thermal noise in measurements, which increases with 

increasing temperature. The second is to ensure that the sensors remain in the 

superconducting phase. Any LTD design must make considerations for cryogenics to keep 

the system in an acceptable temperature range, usually less than 400 mK for a TES or less 

than 50 mK for a MMC. To ensure sufficient cooling, a variety of different cryostat systems 

have been used for LTDs, including 3He/4He dilution refrigerators and adiabatic 

demagnetization refrigerators (ADR). 

Adiabatic Demagnetization Refrigerators: An ADR cools by using the thermodynamic 

properties of paramagnetic materials in magnetic fields. Figure 9 depicts a simplified ADR 

design. When a paramagnetic solid, referred to as a “salt pill”, is placed in a strong magnetic 

field, the magnetic moments of the molecules in the pill align with the field, decreasing the 

entropy of the system. When the strength of the field decreases, the spins in the salt pill 

become more disordered and absorb heat to increase the entropy, resulting in the cooling of 

the pill.  

          Absorber 

C 
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Figure 9. (Left) Schematic of an adiabatic demagnetization refrigerator 
(ADR).  This commercial design uses both a liquid nitrogen and liquid helium 
bath to keep the detector at a temperature of 4.2 K. Two paramagnetic salt 
pills, GGG (Gadolinium-Gallium-Garnet) and FAA (Ferric-Ammonium-Alum), 
are in contact with the helium bath via heat switches (S).  A detector is 
suspended from the FAA salt pill. Figure taken from Ref. [29]. (Right) Picture 
of ADR used for DES. The ADR is used to ensure that the LTDs operate in the 
correct temperature range. 

An ADR works cyclically to cool the environment to temperatures less than 1 mK. The whole 

system is thermally shielded by a liquid N2 bath and radiation shields throughout the cooling 

process. In the first part of the cycle, the paramagnetic salt pills are thermally isolated from 

the liquid H2 heat sink and a magnetic field is applied to the solid. As the spins align in the 

salt and the entropy increases, the salt heats up. Then, the salt pills are thermally connected 

via switches to the heat sink and cooled down back close to their starting temperature. 

Finally, the thermal link to the bath is broken and the magnetic field is decreased. To increase 

in entropy, the salt pills absorb thermal energy from the experimental platform and detector, 

resulting in cooling of both.   

Dilution Refrigerator: A 3He/4He dilution refrigerator uses a mixture of 3He and 4He as the 

cooling agent. When a mixture of these isotopes is cooled beneath 870 mK, it undergoes a 
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phase separation, creating a concentrated phase of nearly pure 3He and a dilute phase of 

about 6.6% 3He and 93.4% 4He (see Figure 10).  

  

Figure 10. (Left) Schematic of a 3He/4He dilution refrigerator [25]. (Right) 
Phase diagram of liquid 3He/4He mixture. The phase separation begins at 
approximately 870 mK, leading to a concentrated phase of 3He (green region) 
and a dilute phase of 6.6% 3He and 93.4% 4He (yellow region). Fermi liquids 
and superfluids are the states of matter describing 3He and 4He at extremely 
low temperatures, respectively. This is another cryostat option to achieve the 
low temperatures necessary for DES measurements using LTDs. Taken from 
Ref. [26].   

In the mixing chamber of the cryostat, these two phases are in equilibrium, creating a phase 

boundary. When 3He enters this chamber, it must cross the phase boundary and become 

diluted, an endothermic process that removes heat from chamber environment and serves 

as the primary method of the extreme cooling.  

2.1.3. Transition-Edge Sensors 

The first demonstration of using the superconducting phase transition for microcalorimetry 

was in 1941, when D. H. Andrews applied a current to a tantalum wire that had been cooled 
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down to its superconducting phase and was able to measure the resistance change in the 

material caused by infrared radiation [27]. The same researchers then measured the voltage 

pulses from bombarding a superconducting niobium nitride strip with alpha particles.  

When certain materials are cooled below a critical temperature 𝑇𝐶  that varies by material, 

they transition into a superconducting state with zero electrical resistance. This phase 

transition into superconductivity can be extremely sharp, creating a sort of edge, as seen in 

Figure 11.  

 

Figure 11. The superconducting to normal phase transition of a Mo/Cu film.  
Near 96 mK, a small change in temperature will cause a measurable change 
in the film’s resistance, due to the fact that the transition is continuous. This 
is used in TESs to translate energy deposition to electronic pulses. Figure 
taken from Ref. [28]. 

The temperature control is done with a combination of temperature controls in the cryostat 

and either voltage or current biasing, which sets constant electronic operating conditions in 

the device.   

One of the initial challenges in developing TES detectors was obtaining an accurate signal 

readout, especially in a device with such low impedance. Whenever a TES was connected to 

a current bias, joule heating would drive the detector out of its superconducting state, a 

process called positive electrothermal feedback. However, this issue was resolved by voltage 

biasing the TES. With a constant voltage, when the temperature of the absorber increases 
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from an energy deposition, the resistance goes up, lowering the current, causing the joule 

heating to go down. This returns the device to its equilibrium temperature, a process called 

negative electrothermal feedback. The change in current from an energy deposition is 

inductively coupled to a superconducting quantum interference device (SQUID) current 

amplifier. The current pulse through the TES coil changes its magnetic field and thus the 

input magnetic flux to the SQUID,  whose output is easily amplified and measured (see Figure 

12).  

 

Figure 12. Electrical schematic of a TES coupled to a SQUID.  The design is 
such that the TES is voltage biased by the current source, 𝐼bias, and the load 
resistor 𝑅𝐿 . Whenever an event is absorbed by the TES, the extra heat causes 
the TES resistance to increase and current to drop. This change in current is 
inductively coupled to a SQUID, whose output is then amplified even further.  

The breakthrough of TES-SQUID coupling has made TES detectors a viable option for current 

experimentation. The biggest advantages in their use are the spectral detail and energy 

resolution. TES detectors are now being developed for measurements of various radiation, 

including alpha particles, beta particles, and photons ranging from eVs to MeVs of energy 

[16, 17, 28]. TESs used for DES measurements of 𝛼  decay have demonstrated excellent 

energy resolution, with ∆𝐸𝐹𝑊𝐻𝑀 = 7.5 ± 0.2 eV for 6539 eV [1].  

2.1.4. Metallic Magnetic Calorimeters 

Another common type of low temperature detector is a metallic magnetic calorimeter 

(MMC). Rather than dealing with the electrical properties of superconducting materials, 
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MMCs use their magnetic properties. These properties are very strongly dependent on 

temperature within many materials, and thus form a good candidate for precise 

thermometry. The idea of low-temperature magnetic calorimetry was first proposed in the 

thesis of W. Seidel, from the Technical University in Munich, in 1986 [29, 30]. Various 

experiments demonstrated the usage of magnetization in a dielectric material to measure 

small energy doses to an absorber. In 1993, it was proposed to use metallic host materials 

instead, because the stronger interactions between magnetic moments and conduction 

electrons in the metal meant the detector response would be faster.  A typical MMC has a 

paramagnet contained within a small magnetic field. This is placed in strong thermal 

contact with an absorber. When energy is deposited in the absorber, it increases in 

temperature, which changes the magnetization of the paramagnet. This can be read by a 

SQUID magnetometer. The relationship between a change in magnetization 𝛿𝑀 caused by 

an energy absorption of amount 𝛿𝐸 is 

 𝛿𝑀 =
𝜕𝑀

𝜕𝑇
𝛿𝑇 =

𝜕𝑀

𝜕𝑇

𝛿𝐸

𝐶TOT
, (6) 

where 𝐶TOT is the total heat capacity of the absorber and the paramagnetic thermometer. 

MMCs have demonstrated excellent energy resolution, with ∆𝐸𝐹𝑊𝐻𝑀 = 3.4  eV for X-ray 

energies up to 6.5 keV [18] and ∆𝐸𝐹𝑊𝐻𝑀 = 340 eV for 122 keV gamma rays emitted from a 

57Co source [29]—on par with other types of low temperature detectors such as the TES.   
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Chapter 3 

SIMULATIONS FOR A DETECTOR RESPONSE MATRIX 

3.1. EGSnrc 

The Electron Gamma Shower (EGSnrc) system is a software application designed for the 

Monte Carlo simulation of transport of different types of ionizing radiation through a user-

defined geometry. The Monte Carlo technique is a widely used scientific tool for problems 

that are often too difficult to solve analytically. The Monte Carlo method can require high 

computational power, and the accuracy of results is dependent on the input parameters, but 

in certain cases where physical experimentation is too time-consuming or costly, Monte 

Carlo simulation provides a reasonable alternative. In this technique, particles are initialized 

with a certain energy and physical distribution. These particles are propagated 

probabilistically through the material, using libraries of cross sections for various 

interactions. For each interaction, the collision particles leave with an energy and direction 

chosen from distributions. This process is continued until all particles are either absorbed 

or leave the geometry of interest [31].  

EGSnrc is capable of simulating electrons, photons, and positrons with kinetic energies from 

1 keV to several hundreds of GeV [32]. Radiation transport may be simulated within any 

element, compound, or mixture.  There are two types of particle transport: charged and 

uncharged. Uncharged particle transport refers to the interactions taken by uncharged 

particles through a medium, such as electromagnetic radiation, while charged refers to the 

transport of charged particles, such as electrons and positrons. Because electrons and 

positrons differ only by having opposite charges, both are referred to as “electrons” for 

simplicity when discussing charged particle transport. EGSnrc has very high accuracy for 

electron and photon transport simulations based on cross-section data. 

EGSnrc uses the physics of Compton scattering, electron-positron pair production, Rayleigh 

scattering, and photoelectric effect for photon transport, and it uses inelastic collisions and 

radiative energy loss for electron transport. One limitation of the software is the ability to 
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track electron transport event-by-event. In cases where electrons have high kinetic energy, 

each simulated particle undergoes hundreds of thousands of interactions with the 

surrounding atoms during the process of slowing down. Modern computing power is 

insufficient to completely track every event that occurs for one electron, much less the 

thousands of initial histories that are simulated. The solution employed by EGSnrc is called 

the “condensed history” technique [33], where the cumulative effect of large numbers of  

these electron transport and collision processes are condensed into a single “step”. The state 

of subsequent steps is determined by calculating the particle’s total change in energy, 

velocity, and position. This technique makes Monte Carlo simulation for a charged particle’s 

transport possible [34].  

Other software packages exist that also employ a Monte Carlo method to simulate particle 

transport, such as MCNP, GEANT4, and PENELOPE. EGSnrc and PENELOPE have comparable 

accuracy for particle transport [35], while GEANT4 can achieve similar agreement under 

certain parameters, but needs further improvement to its modelling. 

3.2. The Physics of Particle Transport Simulation 

3.2.1. Photon Interactions 

Photons interact with matter via four processes: pair production, Compton scattering, photo-

electric absorption, and Rayleigh scattering. All these are used for the simulation of 

uncharged particle transport. 

Pair Production: Pair production is the process whereby an electron-positron pair is 

created when a photon passes through the electromagnetic field created by atomic nuclei 

and surrounding electrons in the medium, as seen in Figure 14. The energy of the photon (E) 

can be converted into particle mass (m) described by Einstein’s equation 

 𝐸 = 𝑚𝑐2, (7) 

using the speed of light (c). From this mass-energy relation, it is clear that for pair production 

to occur, the photon must have energy higher than the sum of the rest mass energies of the 

electron-positron pair. Since both the electron and positron have a rest mass of 0.511 MeV, 
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the photon must have an energy of above 1.022 MeV. Once above this energy threshold, pair 

production dominates over other photon interactions, as shown in Figure 13 

 

Figure 13. Linear attenuation coefficient of as a function of photon energy for 
NaI.  The total attenuation coefficient has contributions from pair production, 
Compton scattering, and photoelectric absorption. Notice how pair 
production dominates at higher energies, while photoelectric absorption 
dominates at low energies. Taken from Ref. [36]. 

 

Figure 14. Diagram depicting the process of electron-positron pair 
production.  As a photon with sufficient energy passes through the 
electromagnetic field of an atom, it can be converted into an electron-
positron pair with nearly collinear velocities. The energy of the products is 
deposited in an absorber during a DES measurement.  
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Compton Scattering: Compton scattering is a scattering process of photons with charged 

particles, usually electrons. In this interaction, the photon transfers some of its energy, 

resulting in a lower scattered photon energy and a recoil electron. Because the energy of a 

photon is inversely proportional to its wavelength, the change in energy can described 

mathematically as a function of the scattering angle 𝜃, determined by: 

 
𝜆′ − 𝜆 =

ℎ

𝑚𝑒𝑐
(1 − cos 𝜃), 

(8) 

where 𝜆  is the photon’s initial wavelength, 𝜆′  is the scattered wavelength, ℎ  is Planck’s 

constant, 𝑚𝑒 is the rest mass of an electron, and c is the speed of light. The process is shown 

in Figure 15. 

       

Figure 15. (Left) Depiction of Compton Scattering. An incident photon with 
wavelength 𝜆 interacts with an electron, scattering at an angle 𝜃 with some 
larger wavelength 𝜆′ while the electron conserves momentum by recoiling at 
some velocity v. (Right) An EGSnrc simulation shows a photon undergoing 
Compton scattering and depositing energy within an Au absorber in the 
highlighted section. 

Photoelectric Absorption: In the photoelectric effect, photons transfer all their energy to 

atomic electrons. When an incident photon to a material has more energy than the binding 

energy of an electron to that material, then the electron is likely to be ejected. Any additional 

energy the photon has above the binding energy of the electron becomes the electron’s 

kinetic energy (see Figure 16). 
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Figure 16. (Left) Depiction of the photoelectric absorption.  Photons incident 
upon atomic electrons are absorbed if their energy is greater than the 
binding energy of the electron. The electrons are then freed from the atom 
and are emitted. Within an absorber, the electrons then deposit their energy. 
(Right) An EGSnrc simulation shows a photon undergoing photoelectric 
absorption within an Au absorber in the highlighted section. Notice how the 
black photon track ends in a red electron track, and the electron deposits its 
energy in the absorber.  

This phenomenon is primarily dominant for low-energy photons.  

Rayleigh Scattering: Rayleigh scattering is a form of elastic scattering of light by particles 

much smaller than the incident wavelength. Because the collision is elastic, the overall effect 

is to simply change the direction of the incident light while its energy remains approximately 

the same. The amount of scattering is inversely proportional to the fourth power of the 

wavelength of the photon. This is the only of the four mentioned photon interactions that 

does not directly transfer photon energy to electrons.  

3.2.2. Electron Interactions 

Electrons lose energy as they traverse a medium via two processes: radiative energy loss and 

inelastic collisions with atomic electrons. The radiative energy loss primarily occurs by 

bremsstrahlung and positron annihilation, while inelastic electron collisions with atomic 

electrons lead to atomic excitation and ionization, which can then result in the emission of x-

rays and electrons during atomic de-excitation.  

Radiative Energy Loss: As electrons traverse through a material, radiative energy loss 

occurs primarily via two processes: bremsstrahlung and positron annihilation. 
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Bremsstrahlung is electromagnetic radiation that is produced by the deceleration of an 

electron by interacting with the electric fields of other charged particles, such as other 

electrons or an atomic nucleus. Deceleration causes a photon to be emitted with energy equal 

to the loss in kinetic energy of the initial electron after interacting with a charged particle. 

Bremsstrahlung is the dominant mechanism of electron energy loss at high energies, and 

transfers this energy from electrons back to photons. Figure 17 represents the 

Bremsstrahlung process.  

 

Figure 17. Depiction of electron energy loss via Bremsstrahlung.  The initial 
electron with energy 𝐸1 passes by and decelerates in the electric field of the 
charged nuclei. The electron loses kinetic energy and continues with energy 
𝐸2 , while a photon is emitted with energy 𝐸 = ℎ𝑓 = 𝐸1 − 𝐸2  to conserve 
energy.  

Electron-positron annihilation can be viewed as the reverse process of pair-production. In 

the annihilation process, a collision between an electron and its anti-particle (the positron) 

results in their destruction and the emission of energetic photons. Due to the laws of energy 

and momentum conservation, the creation of a single photon is forbidden. In the most 
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common case, two photons are created, each with energy equal to the rest mass of an 

electron (0.511 MeV) and emitted in opposite directions.  

Inelastic collisions: This type of interaction leads to various excitations and ionizations of 

atoms along the path of the electron. With any inelastic collision, the electron transfers some 

of its energy to the collided particle; this can take the form of exciting inner-shell atomic 

electrons to higher energy levels or ionizing atomic nuclei. Ionized electrons traverse the 

material and interact via the processes described above, while highly excited atoms deexcite 

via the emission of emission of photons and electrons with characteristic energies.  

3.3. Response Matrix  

Measuring beta spectra using low-temperature detectors yields very high-resolution results, 

but there are still systematic uncertainties that can be accounted for. Energy escape is an 

unavoidable reality of DES, and fractions of the initial energies of beta particles emitted 

inside the absorber will not be thermalized. Microcalorimeter absorbers are designed to be 

large enough to ensure that all beta particles are stopped, but the mechanisms of electron 

transport (i.e. bremsstrahlung, electron-positron annihilation) within the absorber often 

lead to the creation of photons, which are much more likely to escape. Electron attenuation 

within any absorber is theoretically 100%, but photons, especially high energy photons, have 

a lower attenuation, as shown in Figure 18, and withhold decay energy from being 

thermalized.  
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Figure 18. Plot of X-ray mass attenuation coefficients as a function of energy 
for Au.  Higher energy photons have a much lower attenuation coefficient (3–
4 orders of magnitude) than ones with low energy. Data from Ref. [37]. 

The overall effect is beta particles with defined initial energies from a radioactive source are 

detected with reduced energies. This leads to a systematic skew in a measurement of a beta 

spectrum histogram, where lower energy bins are overpopulated, and higher energy bins 

are underpopulated. This systematic energy loss can be accounted for by using EGSnrc. The 

power behind using this MC software is the ability to accurately simulate the energy 

deposition of beta particles within a defined absorber’s geometry, thereby quantifying the 

escape probability. The information garnered from the EGSnrc simulations is used to 

construct the detector’s response, which would be used to account for the systematic loss in 

energy stemming from interactions within the detector itself and thus give a more accurate 

measurement of the beta spectrum. 
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3.3.1. Theory Behind Response Matrix 

One way to describe the spectrum of a beta source is with a column vector 𝑫𝑁 = (

𝐷1
𝐷2
⋮
𝐷𝑁

), 

where N is the number of energy bins over a defined energy range, and 𝐷𝑗  is the counts of 

the jth bin of the energy histogram. The vector 𝑫𝑁 is the true beta spectrum, representing the 

total decay energy of a given source without any energy escape. Define 𝑴𝑁 as the measured 

beta spectrum with the same length as 𝑫𝑁 . Each 𝑀𝑖  is from experimental measurements 

with real microcalorimeters. The response matrix for the detector is given by the 𝑁 × 𝑁 

matrix 𝑹𝑁 = (
𝑅11 ⋯ 𝑅1𝑁
⋮ ⋱ ⋮
𝑅𝑁1 ⋯ 𝑅𝑁𝑁

), where any value 𝑅𝑖𝑗  is proportional to the probability of the 

events in the jth bin of 𝑫𝑁 being measured in the ith energy bin of 𝑴𝑁 , such that  

 𝑹𝑁𝑫𝑁 = 𝑴𝑁. (9) 

To find the matrix elements of R, monoenergetic electrons are simulated inside an absorber, 

and the energy deposition inside the absorber is recorded as a histogram. In doing so, the 

true beta spectrum 𝑫𝑁 is known, since all electrons begin with the same energy. 𝑫𝑁 will take 

the form of 𝑫𝑁 =

(

 

0
⋮
𝑛
⋮
0)

 , where n is the number of electrons simulated and the value of j 

depends on the initial electron energy. The histogram of the electron energy deposition 

inside the absorber is calculated with EGSnrc, and it is proportional to measured beta 

spectrum 𝑴𝑁 . The resulting histogram has heights corresponding the percentage of 

electrons simulated in a specific bin, rather than total counts, so each height must be 

multiplied by n to yield 𝑴𝑁 . With both 𝑫𝑁  and 𝑴𝑁  known, each element of the response 

matrix R is defined to be 

 𝑅𝑖𝑗 =
𝑀𝑖

𝐷𝑗
. (10) 

Once the response matrix 𝑹𝑁 is determined, assuming it is invertible, 
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 𝑹𝑁
−1𝑹𝑁𝑫𝑁 = 𝑫𝑁 = 𝑹𝑁

−1𝑴𝑁, (11) 

This means that, with the inverse of the detector response matrix, the true beta spectrum 

can be obtained by multiplying the inverse matrix onto the measured spectrum. This will 

remove the detector response from a spectrum and account for one of the main systematic 

uncertainties involved in this type of measurement at low energies [38]. 

3.4. Assumptions 

The proposed methodology is first based on the following assumptions:  

1. The physics within EGSnrc is an accurate representation of particle transport within 

an MMC absorber. 

2. The time period of energy deposition for any particle’s specific decay path is short 

compared to the measurement time. 

3. Any measured decay is independent from all other events. This mean that no memory 

or pile-up issues are factored into the simulation parameters.  

While assumptions 2 and 3 pose real issues for any DES measurement, the largest source of 

systematic uncertainty comes from the incomplete absorption of all decay radiation energy, 

and is why the Monte Carlo simulation approach lends itself as a viable process to obtaining 

the detector’s response.  
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Chapter 4 

THE ANATOMY OF A SIMULATED SPECTRUM 

To account for the many factors contributing to energy escape from an absorber, EGSnrc is 

used to calculate the escape probabilities via the Monte Carlo method. Monoenergetic beta 

particles are simulated within an absorber, and the energy deposition within the various 

regions of the simulation environment is recorded. Creating 1000s of monoenergetic 

simulations across an entire range of energies yields the escape probability of an entire beta 

spectrum. This information can be used to unfold energy loss that comes from escape.  

4.1. Simulation Parameters 

4.1.1. Deconstruction of an Input File 

EGSnrc is used to simulate the source, absorber, and transport of particles within an 

absorber. The user controls the geometry of the source, its location, and the type of radiation 

emitted, as well as the geometry, composition, and location of the absorber. The parameters 

for particle transport are largely determined by distributions internal to the software, but 

limits can be placed on maximum and minimum particle energies. To replicate real beta 

spectroscopy measurements, beta-decay point sources are simulated inside an absorber and 

all energy deposited within the geometry of the absorber is recorded. The weights of this 

information is its scoring. 

EGSnrc input files are broken into a series of input blocks, each of which is responsible for 

defining parameters relating to the simulation.  

Run Control: This input block determines how many histories to initialize in the simulation, 

which is the number of radioactive source particles used. For example, to simulate one 

million histories, the following block is used: 

:start run control: 

    ncase = 1e6 

:stop run control: 

 



35 
 

The computational time of the simulation increases as the number of histories is increased 

and as the initial energy of each history increases. The full simulation time for 0.25 MeV 

electrons simulated in an Au absorber was 5 minutes, but increased to 35 minutes when the 

energy was raised to 1.00 MeV.  

Geometry Definition: The geometry input block determines the size and shape of any 

objects within the simulation. Two types of geometry must be defined: source geometry and 

phantom geometry. The source geometry defines the shape of the radioactive source, while 

the phantom geometry defines the volume within which energy deposition will be scored. 

The following blocks were used to define the phantom (Au absorber) and source geometries: 

:start geometry definition: 

    # Define phantom geometry (Au absorber) 

    :start geometry: 

        name = absorber 

        library = egs_ndgeometry 

        type    = EGS_XYZGeometry 

        x-slabs = -0.03, 0.06, 1 

        y-slabs = -0.03, 0.06, 1 

        z-slabs = -0.03, 0.06, 1 

        :start media input: 

            media = Au 

        :stop media input: 

    :stop geometry: 

 

    # Define the source geometry (point source) 

    :start geometry: 

        name = seed 

        library = egs_spheres 

        midpoint = 0 0 0 

        type = EGS_cSpheres 

        radii = 0.0001 

        :start media input: 

            media = AIR_TG43_LD 

            set medium = 0 0 

        :stop media input: 

    :stop geometry: 

 

    phantom geometries = absorber 

    source geometries = seed 

 

:stop geometry definition: 
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Media Definition: This input block defines the materials for each volume. Multiple media 

can be defined in this input block. Media are defined by calling material data files that contain 

default mass densities and density correction information. For example, many different 

media are all defined in the material.dat file, as shown in the following input block: 

:start media definition: 

    material data file = /egs_home/egs_brachy/lib/media/material.dat     

:stop media definition: 

 

Once the media have been defined in an input file, individual geometry regions are assigned 

a medium within the geometry definition input blocks. For example, within the definition of 

the phantom geometry, the geometry was defined to be gold: 

:start geometry: 

    name = absorber 

    library = egs_ndgeometry 

    type    = EGS_XYZGeometry 

    x-slabs = -0.03, 0.06, 1 

    y-slabs = -0.03, 0.06, 1 

    z-slabs = -0.03, 0.06, 1 

    :start media input: 

        media = Au 

    :stop media input: 

:stop geometry: 

 

Source Definition: The source definition input block determines the characteristics of the 

radioactive source in the simulation. The user can create five types of sources: collimated, 

Fano, isotropic, parallel beam, and point. A collimated source only irradiates in a certain 

defined area or solid angle. Fano sources deliver particles proportional to the mass in the 

source region. An isotropic source emits particles uniformly distributed in a 4𝜋 angle (and a 

point source is a special subset of isotropic sources that emit from a single point in space). 

Parallel beam sources emit particles uniformly in a single direction. Electron, positron, and 

photon sources can be created with different energy distributions using a spectrum input 

block nested within the source definition input block. For example, to define a 1 MeV 

monoenergetic electron point source: 

:start source: 

    library = egs_point_source 
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    name = PointSource 

    charge = -1 

    position = 0 0 0 

    :start spectrum: 

        type = monoenergetic 

        energy = 1 

    :stop spectrum: 

:stop source: 

 

Transport Parameters: Global parameters for the simulation, including maximum and 

minimum energy cutoffs for photons and electrons are defined in this block.  The parameters 

used are shown in the following input block: 

:start MC transport parameter: 

    Global ECUT                    = 0.512 

    Global PCUT                    = 0.001 

    Source ECUT                    = 0.512 

    Source PCUT                    = 0.001 

    Fluorescent Photon Cutoff      = 0.001 

    Brems Cross Sections           = NRC 

    Rayleigh Scattering            = On 

    Electron Impact Ionization     = On 

:stop MC transport parameter: 

 

Scoring Options: The user must define the mass attenuation coefficients as a function of 

energy (muen) for each material used in the simulation, which is done by calling a library of 

attenuation data for many different materials. This block is also used to score energy 

deposition in different regions of the simulation. This information is returned in the form of 

a histogram. For example, scoring energy deposition in a gold volume: 

:start scoring options: 

    # The path to a file containing mass-energy absorption data for  

    the relevant media in the simulation     

    muen file = egs_home/egs_brachy/lib/muen/ 

    brachy_gold_1.5MeV.muendat 

  

    muen for media = Au 

  

#Energy deposition histogram 

pulse height regions = 1 #Index of geometry region to score in 

pulse height bins = 100 #Number of energy bins 

  

:stop scoring options: 
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Additional options for scoring different types of spectra can be chosen by the user, including 

the absolute counts of particles escaping the external surface of the source, an energy 

weighted spectrum of particles on the surface of the source, and photon fluence in a 

geometry region (See Appendix B). 

Ausgab Objects: Ausgab definitions provide more options for additional outputs from a 

simulation. Different ausgab objects pulled from the EGS_AusgabObject library provide 

different information for scoring. Two very useful ausgab objects are EGS_TrackScoring [39] 

and EGS_DoseScoring [40], which record the directional paths taken by every particle over 

the course of the simulation and record energy deposition in each geometry, respectively. 

EGS_TrackScoring ouputs particle track information to a separate file that is used to visualize 

both the geometries and the particles’ transport through the material, as seen in Figure 19. 

To define these two ausgab objects: 

:start ausgab object definition:  

### Particle tracks 

:start ausgab object: 

name = tracks 

library = egs_track_scoring 

:stop ausgab object:  

### Dose scoring 

:start ausgab object: 

library = egs_dose_scoring 

name = my_dose_scoring 

region dose = yes 

volume = 0.000216 

dose regions = 1 

:stop ausgab object: 

:stop ausgab object definition: 

 

The exact input files of the simulations used to create the response matrix can be found in  

Appendix A. In each simulation, a million monoenergetic beta particles (electrons) are 

emitted isotropically from a point source in the center of a 0.6 × 0.6 × 0.6 cm3 Au box, which 

represents the absorber of a microcalorimeter and is like actual absorber dimensions and 

composition used for real 𝛽-spectrum measurements [41,38]. This was simulated in the 

center of a 30 × 30 × 30 cm3 box of air. Energy deposition from all particle interactions was 

scored in all regions across the simulation environment i.e., within the point source, 

absorber, and surrounding air box. The total energy deposited in each region is returned in 
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the simulation output file. The EGSnrc codes egs_track_scoring  and egs_dose_scoring were 

used to create the particle tracks and record energy deposition, respectively. The particle 

tracks are shown in Figure 19. 

 

Figure 19. Particle tracks from an ENSnrc simulation of monoenergetic 
electrons travelling through an Au microcalorimeter absorber.  The cube is 
the Au absorber, with dimensions of 0.6 × 0.6 × 0.6 cm3 . Within the 
absorber, the particle tracks of photons and electrons have been displayed. 
Black lines are photons, while red are electrons.  

4.1.2. Monoenergetic Simulations 

The response matrix is constructed with a series of monoenergetic simulations. In each 

simulation, monoenergetic electrons are simulated within the absorber, and the total energy 

deposited by each of the simulated decays is recorded, resulting in a histogram 

corresponding to a measured energy spectrum corresponding to the decays with a single 

energy (see Figure 20). 
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Figure 20. Histogram of energy escape of electrons from an Au absorber.  The 
histogram of the initial energies of electrons in the simulation is shown in 
green; all the particles are within the bin 𝑗∆𝐸, where j is the energy and ∆𝐸 is 
the bin width. The histogram of energies output from the simulation is shown 
in blue. Energy escape means that not all the energy of each electron was 
deposited in the absorber, resulting in a spectrum shift. Figure modified from 
Ref. 38. 

4.2. Response Matrix 

To construct the response matrix, monoenergetic simulations will be run across the energy 

range of 10 keV to 2 MeV, incrementally increasing by 10 keV. Finer incrementing between 

monoenergetic simulations creates a more continuous response matrix. Once created, the 

inverse response matrix will be numerically solved in Python. Having the inverse response 

matrix then allows for the detector response to be deconvolved from a measured DES 

spectrum, resulting in a new histogram that is closer to the true beta spectrum.  
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Chapter 5 

BEGINNINGS OF A RESPONSE MATRIX 

5.1. Construction of Response Matrix 

When using DES to measure the total energy of a decay from an embedded radioactive 

source, some of the total decay energy is lost due to incomplete thermalization, largely from 

decay products escaping the absorber. This results in a DES spectrum with measured 

energies lower than the decay energy. The escape probability is not constant as a function of 

initial energy and depends on a variety of factors, including absorber material and source 

energy, type, location, and distribution. By working with EGSnrc to simulate varying 

monoenergetic beta sources within a microcalorimeter, this detector response can be 

quantified in the form of a matrix 𝑅. The value 𝑅𝑖𝑗  of a particular element of the response 

matrix is proportional to the probability that a decay will deposit that much energy in the 

absorber.  

The tutor7pp code from EGSnrc is used to create a histogram of the energy deposition, which 

is written to a text file (.egslog). The initial energy of the electrons corresponds to the  𝑗 index, 

the x-axis binning from the histogram corresponds to the 𝑖 index, and the height of each bin 

corresponds to the value 𝑎𝑖𝑗 of the response matrix.  

To explore the escape probabilities as a function of source energy, monoenergetic electron 

sources of 0.25 MeV, 0.50 MeV, 0.75 MeV, and 1.00 MeV were simulated using the tutor7pp 

program. For each, the number of bins in the histogram was adjusted so that the width of 

each bin would be the same across all four input energies. Figure 21 shows the resulting 

energy histograms created from these simulations. 

5.1.1. Simulation Analysis  

To simply the process of data analysis of the simulations, a python script (see Appendix C) 

was written to read the .egslog files for each simulation and save the energy deposition 

histogram.  
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Figure 21. Four energy deposition histograms created from simulating 
various monoenergetic electron sources inside a 0.6 × 0.6 × 0.6 mm3  Au 
absorber.  Blue is a 0.25 MeV source, orange is 0.50 MeV, green is 0.75 MeV, 
and red is 1.00 MeV. All histograms have the same binning width of 12.5 keV 
and have similar escape peaks. 

Finer binning within an energy deposition histogram reveals structure within the energy 

escape probability. For example, the peak at 935 keV corresponds to electrons with 1 MeV 

of energy that have deposited only 935 keV. This occurs about 2% of the time, and it 

corresponds to gold fluorescent X-rays escaping. Gold K𝛼1 and 𝐾𝛼2 X-rays are 66.8037 keV 

and 66.9895 keV, respectively [42]. 

This process can be used to create a finely binned response matrix, by simulating the entire 

energy range of 10 keV to 2 MeV with 10 keV steps. This can be done by running a batch 

mode in EGSnrc. 
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5.1.2. Inverse of the Response Matrix 

As was discussed in Chapter 2, the actual quantity of interest is not 𝑅, but 𝑅−1, or the inverse 

of the response matrix. We can show that this is actually the desired matrix by showing: 

𝑅−1𝑅 = 𝐼 

It is this inverse matrix that can be used to deconvolve detector response from a measured 

beta spectrum. When the matrix operates on measured DES histogram, the detector 

response is accounted for, and the result is the true beta spectrum. The overall effect is a 

slight shift in the DES histogram away from lower energy bins that were overpopulated due 

to energy loss (see Figure 22). 

 

Figure 22. Comparison of 36Cl beta spectra with the simulated measured 
histogram (left) and the deconvolved histogram (right). Taken from 
Ref.38. 
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Chapter 6 

DISCUSSION 

6.1. Conclusions and Future Plans 

A method for determining the response matrix for DES absorber was proposed and initial 

results were presented for simulations of monoenergetic electrons for four energies (0.25, 

0.50, 0.75, and 1.00 MeV) within a 0.6 × 0.6 × 0.6 mm3 Au absorber. Provided sufficiently 

fine binning and a large number of histories, a response matrix can be created to unfold the 

detector response from beta spectroscopy measurements, offering superior measurements 

and lower uncertainties.  

Then, the response matrix could be applied to real DES beta spectra to see how the 

theoretical calculations compare to experimental measurements.  

This tool can be used to study the effect of absorber materials and geometries on escape 

probabilities. Future studies should include uncertainty calculations of this approach and 

benchmarking the results with experimental data from a monoenergetic electron source. 
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Appendix A  

The following is the source code for the tutor7pp software used to run the simulations. 

/* 

############################################################################

### 

# 

#  EGSnrc egs++ tutor7pp application 

#  Copyright (C) 2015 National Research Council Canada 

# 

#  This file is part of EGSnrc. 

# 

#  EGSnrc is free software: you can redistribute it and/or modify it under 

#  the terms of the GNU Affero General Public License as published by the 

#  Free Software Foundation, either version 3 of the License, or (at your 

#  option) any later version. 

# 

#  EGSnrc is distributed in the hope that it will be useful, but WITHOUT ANY 

#  WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 

#  FOR A PARTICULAR PURPOSE.  See the GNU Affero General Public License for 

#  more details. 

# 

#  You should have received a copy of the GNU Affero General Public License 

#  along with EGSnrc. If not, see <http://www.gnu.org/licenses/>. 

# 

############################################################################

### 

# 

#  Author:          Iwan Kawrakow, 2005 

# 

#  Contributors:    Frederic Tessier 

# 

############################################################################

### 

# 

#  A relatively simple EGSnrc application using the C++ interface. It 

#  implements the functionality of the original tutor7 tutorial code written 

#  in mortran except that now, due to the use of the general geometry and 

#  source packages included in egspp, any geometry or any source can be used 

#  in the simulation. 

# 

#  In addition, tutor7pp derives from the EGS_AdvancedApplication class and 

#  therefore automatically inherits the ability to do restarted and parallel 

#  simulations, to combine the results of parallel runs or to re-analyze the 

#  results of single/parallel runs. It also inherits the ability to run for 

a 

#  user specified maximum amount of cpu time or to terminate the simulation 

#  when a user specified uncertainty has been reached. 

# 

# 

#  TERMINOLOGY 

#  ----------- 

# 
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#  Simulations are split into 'chunks'. For simple simulations (no parallel 

#  runs, etc.) there is a single simulation chunk with the number of 

#  histories specified in the input file. For parallel runs the number of 

#  chunks and number of histories per chunk are determined by a 'run control 

#  object' (see below). 

# 

#  Each simulation chunk is split into 'batches'. The batches are not required 

#  for statistical analysis (by using the provided scoring classes it is easy 

#  to have a history-by-history uncertainty estimation). Instead, simulation 

#  chunks are split into batches so that the progress of the simulation can 

be 

#  reported after the completion of a batch and the current results can be 

#  stored into a data file. By default there are 10 batches per simulation 

chunk 

#  but this can be changed in the input file. 

# 

#  The simulation is controlled via a 'run control object' (RCO) The purpose 

#  of the run control object is to give to the shower loop the number of 

#  histories per simulation chunk, number of batches per chunk and to possibly 

#  terminate the simulation prematurely if certain conditions are met (e.g. 

#  maximum cpu time allowed is exceeded or the required uncertainty has been 

#  reached). 

# 

#  egs++ provides 2 run control objects: 

# 

#  1)  simple:  the simple RCO always uses a single simulation chunk. 

# 

#  2)  JCF:     a JCF object is used by default for parallel runs 

#               JCF stands for Job Control File as this type of object 

#               uses a file placed in the user code directory to record 

#               the number of histories remaining, the number of jobs 

#               running, etc., in parallel runs. This is explained in 

#               more details in PIRS-877. A JCF object uses by default 

#               10 simulation chunks but this can be changed in the 

#               input file. 

# 

#  It is possible to use a simple control object for parallel runs by giving 

#  the -s or --simple command line option. In this case, each parallel job 

#  will run the number of histories specified in the input file but 

#  automatically adjust the initial random number seed(s) with the job index. 

#  This additional possibility has been implemented because several users 

have 

#  reported problems with file locking needed for a JCF run control object. 

# 

#  It is also possible to have other RCO's compiled into shared libraries and 

#  automatically loaded at run time (e.g., one could implement a RCO that 

#  communicates via TCP/IP with a remote server to obtain the number of 

#  histories in the next simulation chunk). 

# 

# 

#  USAGE 

#  ----- 

# 

#  - Geometry and particle source are specified in an input file as explained 

#    in PIRS-899 and PIRS-898. 

# 

#  - Run control is specified in a section of the input file delimited by 
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#    :start run control: and :stop run control: labels. 

# 

#  - A simple RCO is used for single job runs. 

# 

#  - A JCF RCO is used by default for parallel runs, unless -s or --simple 

#    is specified on the command line. 

# 

#  - A simple RCO understands the following keys: 

#    ncase                       = number of histories to run 

#    nbatch                      = number of batches to use 

#    statistical accuracy sought = required uncertainty, in % 

#    max cpu hours allowed       = max. processor time allowed 

#    calculation                 = first | restart | combine | analyze 

# 

#    All inputs except for ncase are optional (a missing ncase key will result 

#    in a simulation with 0 particles). 

# 

#  - A JCF object understands all the above keys plus 

#    nchunk = number of simulation chunks 

# 

#  - The simulation is run using 

# 

#    tutor7pp -i input_file -p pegs_file [-o output_file] [-s] [-P n -j i] 

# 

#    where command line arguments between [] are optional. The -P n option 

#    specifies the number of parallel jobs n and -j i the index of this job. 

#    On Linux/Unix systems it is more convenient to use the 'exb' script for 

#    parallel job submission (see PIRS-877) 

# 

############################################################################

### 

*/ 

#include "egs_advanced_application.h" 

#include "egs_scoring.h" 

#include "egs_interface2.h" 

#include "egs_functions.h" 

#include "egs_input.h" 

#include "egs_base_source.h" 

#include "egs_rndm.h" 

#include <cstdlib> 

using namespace std; 

class APP_EXPORT Tutor7_Application : public EGS_AdvancedApplication { 

    EGS_ScoringArray *score;    // scoring array with energies deposited 

    EGS_ScoringArray *eflu;     // scoring array for electron fluence at back 

of geometry 

    EGS_ScoringArray *gflu;     // scoring array for photon fluence at back 

of geometry 

    EGS_ScoringArray **pheight; // pulse height distributions. 

    int              nreg;      // number of regions in the geometry 

    int              nph;       // number of pulse height objects. 

    double           Etot;      // total energy that has entered the geometry 

    int              rr_flag;   // used for RR and radiative splitting 

    EGS_Float        current_weight; // the weight of the initial particle 

that 

    // is currently being simulated 

    bool  deflect_brems; 

    EGS_Float        *ph_de;    // bin widths if the pulse height distributions. 
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    int              *ph_regions; // region indices of the ph-distributions 

    static string revision;    // the CVS revision number 

public: 

    Tutor7_Application(int argc, char **argv) : 

        EGS_AdvancedApplication(argc,argv), score(0), eflu(0), gflu(0), 

pheight(0), 

        nreg(0), nph(0), Etot(0), rr_flag(0), current_weight(1), 

deflect_brems(false) { }; 

    ~Tutor7_Application() { 

        if (score) { 

            delete score; 

        } 

        if (eflu) { 

            delete eflu; 

        } 

        if (gflu) { 

            delete gflu; 

        } 

        if (nph > 0) { 

            for (int j=0; j<nph; j++) { 

                delete pheight[j]; 

            } 

            delete [] pheight; 

            delete [] ph_regions; 

            delete [] ph_de; 

        } 

    }; 

    void describeUserCode() const; 

    int initScoring(); 

    int ausgab(int iarg); 

    int outputData(); 

    int readData(); 

    void resetCounter(); 

    int addState(istream &data); 

    void outputResults(); 

    void getCurrentResult(double &sum, double &sum2, double &norm, 

                          double &count); 

protected: 

    int startNewShower(); 

}; 

string Tutor7_Application::revision = " "; 

extern "C" void F77_OBJ_(egs_scale_xcc,EGS_SCALE_XCC)(const int *,const 

EGS_Float *); 

extern "C" void F77_OBJ_(egs_scale_bc,EGS_SCALE_BC)(const int *,const 

EGS_Float *); 

void Tutor7_Application::describeUserCode() const { 

    egsInformation( 

        "\n               ***************************************************" 

        "\n               *                                                 *" 

        "\n               *                  tutor7pp                       *" 

        "\n               *                                                 *" 

        "\n               ***************************************************" 

        "\n\n"); 

    egsInformation("This is Tutor7_Application %s based on\n" 

                   "      EGS_AdvancedApplication %s\n\n", 

                   egsSimplifyCVSKey(revision).c_str(), 

                   egsSimplifyCVSKey(base_revision).c_str()); 
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} 

int Tutor7_Application::initScoring() { 

    // Get the number of regions in the geometry. 

    nreg = geometry->regions(); 

    score = new EGS_ScoringArray(nreg+2); 

    //i.e. we always score energy fractions 

    eflu = new EGS_ScoringArray(200); 

    gflu = new EGS_ScoringArray(200); 

    // Initialize with no russian roulette 

    the_egsvr->i_do_rr = 1; 

    EGS_Input *options = input->takeInputItem("scoring options"); 

    if (options) { 

        EGS_Input *scale; 

        while ((scale = options->takeInputItem("scale xcc"))) { 

            vector<string> tmp; 

            int err = scale->getInput("scale xcc",tmp); 

            //egsInformation("Found 'scale xcc', err=%d 

tmp.size()=%d\n",err,tmp.size()); 

            if (!err && tmp.size() == 2) { 

                int imed = EGS_BaseGeometry::getMediumIndex(tmp[0]) + 1; 

                if (imed > 0) { 

                    EGS_Float fac = atof(tmp[1].c_str()); 

                    egsInformation("\n ***** Scaling xcc of medium %d with 

%g\n",imed,fac); 

                    F77_OBJ_(egs_scale_xcc,EGS_SCALE_XCC)(&imed,&fac); 

                } 

            } 

            delete scale; 

        } 

        while ((scale = options->takeInputItem("scale bc"))) { 

            vector<string> tmp; 

            int err = scale->getInput("scale bc",tmp); 

            //egsInformation("Found 'scale xcc', err=%d 

tmp.size()=%d\n",err,tmp.size()); 

            if (!err && tmp.size() == 2) { 

                int imed = EGS_BaseGeometry::getMediumIndex(tmp[0]) + 1; 

                if (imed > 0) { 

                    EGS_Float fac = atof(tmp[1].c_str()); 

                    egsInformation("\n ***** Scaling bc of medium %d with 

%g\n",imed,fac); 

                    F77_OBJ_(egs_scale_bc,EGS_SCALE_BC)(&imed,&fac); 

                } 

            } 

            delete scale; 

        } 

        vector<string> choices; 

        choices.push_back("no"); 

        choices.push_back("yes"); 

        deflect_brems = options->getInput("deflect electron after 

brems",choices,0); 

        if (deflect_brems) { 

            egsInformation("\n *** Using electron deflection in brems 

events\n\n"); 

            setAusgabCall(AfterBrems,true); 

        } 

        int n_rr; 

        if (!options->getInput("Russian Roulette",n_rr) && n_rr > 1) { 



50 
 

            the_egsvr->i_do_rr = n_rr; 

            setAusgabCall(BeforeBrems,true); 

            setAusgabCall(AfterBrems,true); 

            setAusgabCall(BeforeAnnihFlight,true); 

            setAusgabCall(AfterAnnihFlight,true); 

            setAusgabCall(BeforeAnnihRest,true); 

            setAusgabCall(AfterAnnihRest,true); 

            //setAusgabCall(FluorescentEvent,true); 

            egsInformation("\nUsing Russian Roulette with survival 

probability 1/%d\n",n_rr); 

        } 

        // The user has provided scoring options input. 

        // See where she/he wants to score a pulse height distribution 

        // and how many bins to use for each pulse height distribution 

        vector<int> regions; 

        int err = options->getInput("pulse height regions",regions); 

        vector<int> nbins; 

        int err1 = options->getInput("pulse height bins",nbins); 

        if (!err && !err1) { 

            if (regions.size() != nbins.size() && nbins.size() != 1) 

                egsWarning("initScoring(): you must input the same " 

                           "number of 'regions' and 'bins' inputs or a single 

'bins'" 

                           " input\n"); 

            else { 

                EGS_ScoringArray **tmp = new EGS_ScoringArray* [nreg+2]; 

                for (int i=0; i<nreg+2; i++) { 

                    tmp[i] = 0; 

                } 

                for (int j=0; j<regions.size(); j++) { 

                    int nb = nbins.size() == 1 ? nbins[0] : nbins[j]; 

                    if (nb < 1) { 

                        egsWarning("zero bins for region %d?\n",regions[j]); 

                    } 

                    if (regions[j] < -1 || regions[j] > nreg) { 

                        egsWarning("invalid region index %d\n",regions[j]); 

                    } 

                    if (nb > 0 && regions[j] >= 0 && regions[j] < nreg+2) { 

                        int ij = regions[j]; 

                        if (tmp[ij]) egsInformation("There is already a " 

                                                        "PHD object in 

region %d => ignoring it\n",ij); 

                        else { 

                            tmp[ij] = new EGS_ScoringArray(nb); 

                            ++nph; 

                        } 

                    } 

                } 

                if (nph > 0) { 

                    pheight = new EGS_ScoringArray* [nph]; 

                    ph_regions = new int [nph]; 

                    ph_de = new EGS_Float [nph]; 

                    EGS_Float Emax = source->getEmax(); 

                    int iph = 0; 

                    for (int j=0; j<nreg+2; j++) { 

                        if (tmp[j]) { 

                            pheight[iph] = tmp[j]; 
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                            ph_regions[iph] = j; 

                            int nbin = pheight[iph]->bins(); 

                            ph_de[iph++] = Emax/nbin; 

                        } 

                    } 

                } 

                delete [] tmp; 

            } 

        } 

        else egsWarning("initScoring(): you must provide both, 'regions'" 

                            " and 'bins' input\n"); 

        delete options; 

    } 

    return 0; 

} 

int Tutor7_Application::ausgab(int iarg) { 

    if (iarg <= 4) { 

        int np = the_stack->np - 1; 

        // Note: ir is the region number+1 

        int ir = the_stack->ir[np]-1; 

        // If the particle is outside the geometry and headed in the positive 

        // z-direction, change the region to count it as "transmitted" 

        // Note: This is only valid for certain source/geometry conditions! 

        // If those conditions are not met, the reflected and transmitted 

        // energy fractions will be wrong 

        if (ir == 0 && the_stack->w[np] > 0) { 

            ir = nreg+1; 

        } 

        EGS_Float aux = the_epcont->edep*the_stack->wt[np]; 

        if (aux > 0) { 

            score->score(ir,aux); 

        } 

        // if( the_stack->iq[np] ) score->score(ir,the_epcont-

>edep*the_stack->wt[np]); 

        if (ir == nreg+1) { 

            EGS_ScoringArray *flu = the_stack->iq[np] ? eflu : gflu; 

            EGS_Float r2 = the_stack->x[np]*the_stack->x[np] + the_stack-

>y[np]*the_stack->y[np]; 

            int bin = (int)(sqrt(r2)*10.); 

            if (bin < 200) { 

                aux = the_stack->wt[np]/the_stack->w[np]; 

                if (aux > 0) { 

                    flu->score(bin,aux); 

                } 

            } 

        } 

        return 0; 

    } 

    int np = the_stack->np-1; 

    if (iarg == BeforeBrems || iarg == BeforeAnnihRest || (iarg == 

BeforeAnnihFlight && 

            the_stack->latch[np] > 0)) { 

        the_stack->latch[np] = 0; 

        rr_flag = 1; 

        the_egsvr->nbr_split = the_egsvr->i_do_rr; 

        return 0; 

    } 
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    if (iarg == AfterBrems && deflect_brems) { 

        EGS_Vector u(the_stack->u[np-1],the_stack->v[np-1],the_stack->w[np-

1]); 

        EGS_Float tau = the_stack->E[np-1]/the_useful->rm - 1; 

        EGS_Float beta = sqrt(tau*(tau+2))/(tau+1); 

        EGS_Float eta = 2*rndm->getUniform()-1; 

        EGS_Float cost = (beta + eta)/(1 + beta*eta); 

        EGS_Float sint = 1 - cost*cost; 

        if (sint > 0) { 

            sint = sqrt(sint); 

            EGS_Float cphi, sphi; 

            rndm->getAzimuth(cphi,sphi); 

            u.rotate(cost,sint,cphi,sphi); 

            the_stack->u[np-1] = u.x; 

            the_stack->v[np-1] = u.y; 

            the_stack->w[np-1] = u.z; 

        } 

    } 

    if (iarg == AfterBrems || iarg == AfterAnnihRest || iarg == 

AfterAnnihFlight) { 

        the_egsvr->nbr_split = 1; 

        if (iarg == AfterBrems && rr_flag) { 

            the_stack->latch[the_stack->npold-1] = 1; 

        } 

        rr_flag = 0; 

        return 0; 

    } 

    /* 

    if( iarg == FluorescentEvent && the_stack->latch[np] > 0 ) { 

        the_stack->latch[np] = 0; the_stack->wt[np] /= the_egsvr->i_do_rr; 

        if( np+1+the_egsvr->i_do_rr > MXSTACK ) 

            egsFatal("Stack size exceeded while splitting dluorescent 

photon!\n"); 

        for(int j=1; j<the_egsvr->i_do_rr; j++) { 

            EGS_Float cost = 2*rndm->getUniform()-1; 

            EGS_Float sint = 1 - cost*cost; sint = sint > 0 ? sqrt(sint) : 0; 

            EGS_Float cphi, sphi; rndm->getAzimuth(cphi,sphi); 

            the_stack->E[np+j] = the_stack->E[np]; 

            the_stack->wt[np+j] = the_stack->wt[np]; 

            the_stack->iq[np+j] = the_stack->iq[np]; 

            the_stack->ir[np+j] = the_stack->ir[np]; 

            the_stack->dnear[np+j] = the_stack->dnear[np]; 

            the_stack->latch[np+j] = the_stack->latch[np]; 

            the_stack->x[np+j] = the_stack->x[np]; 

            the_stack->y[np+j] = the_stack->y[np]; 

            the_stack->z[np+j] = the_stack->z[np]; 

            the_stack->u[np+j] = sint*cphi; 

            the_stack->v[np+j] = sint*sphi; 

            the_stack->w[np+j] = cost; 

        } 

    } 

    */ 

    return 0; 

} 

int Tutor7_Application::outputData() { 

    // We first call the outputData() function of our base class. 

    // This takes care of saving data related to the source, the random 
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    // number generator, CPU time used, number of histories, etc. 

    int err = EGS_AdvancedApplication::outputData(); 

    if (err) { 

        return err; 

    } 

    // We then write our own data to the data stream. data_out is 

    // a pointer to a data stream that has been opened for writing 

    // in the base class. 

    (*data_out) << "  " << Etot << endl; 

    if (!score->storeState(*data_out)) { 

        return 101; 

    } 

    for (int j=0; j<nph; j++) { 

        if (!pheight[j]->storeState(*data_out)) { 

            return 102+j; 

        } 

    } 

    if (!eflu->storeState(*data_out)) { 

        return 301; 

    } 

    if (!gflu->storeState(*data_out)) { 

        return 302; 

    } 

    return 0; 

} 

int Tutor7_Application::readData() { 

    // We first call the readData() function of our base class. 

    // This takes care of reading data related to the source, the random 

    // number generator, CPU time used, number of histories, etc. 

    // (everything that was stored by the base class outputData() method). 

    int err = EGS_AdvancedApplication::readData(); 

    if (err) { 

        return err; 

    } 

    // We then read our own data from the data stream. 

    // data_in is a pointer to an input stream that has been opened 

    // by the base class. 

    (*data_in) >> Etot; 

    if (!score->setState(*data_in)) { 

        return 101; 

    } 

    for (int j=0; j<nph; j++) { 

        if (!pheight[j]->setState(*data_in)) { 

            return 102+j; 

        } 

    } 

    if (!eflu->setState(*data_in)) { 

        return 301; 

    } 

    if (!gflu->setState(*data_in)) { 

        return 302; 

    } 

    return 0; 

} 

void Tutor7_Application::resetCounter() { 

    // Reset everything in the base class 

    EGS_AdvancedApplication::resetCounter(); 
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    // Reset our own data to zero. 

    score->reset(); 

    Etot = 0; 

    for (int j=0; j<nph; j++) { 

        pheight[j]->reset(); 

    } 

    eflu->reset(); 

    gflu->reset(); 

} 

int Tutor7_Application::addState(istream &data) { 

    // Call first the base class addState() function to read and add 

    // all data related to source, RNG, CPU time, etc. 

    int err = EGS_AdvancedApplication::addState(data); 

    if (err) { 

        return err; 

    } 

    // Then read our own data to temporary variables and add to 

    // our results. 

    double etot_tmp; 

    data >> etot_tmp; 

    Etot += etot_tmp; 

    EGS_ScoringArray tmp(nreg+2); 

    if (!tmp.setState(data)) { 

        return 101; 

    } 

    (*score) += tmp; 

    for (int j=0; j<nph; j++) { 

        EGS_ScoringArray tmpj(pheight[j]->bins()); 

        if (!tmpj.setState(data)) { 

            return 102 + j; 

        } 

        (*pheight[j]) += tmpj; 

    } 

    EGS_ScoringArray tmp1(200); 

    if (!tmp1.setState(data)) { 

        return 301; 

    } 

    (*eflu) += tmp1; 

    if (!tmp1.setState(data)) { 

        return 302; 

    } 

    (*gflu) += tmp1; 

    return 0; 

} 

void Tutor7_Application::outputResults() { 

    egsInformation("\n\n last case = %d Etot = %g\n", 

                   (int)current_case,Etot); 

    double norm = ((double)current_case)/Etot; 

    

egsInformation("\n\n======================================================\n

"); 

    egsInformation(" Energy fractions\n"); 

    

egsInformation("======================================================\n"); 

    egsInformation("The first and last items in the following list of energy 

fractions are the reflected and transmitted energy, respectively. These two 

values are only meaningful if the source is directed in the positive z-
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direction. The remaining values are the deposited energy fractions in the 

regions of the geometry, but notice that the identifying index is the region 

number offset by 1 (ir+1)."); 

    score->reportResults(norm, 

                         "ir+1 | Reflected, deposited, or transmitted energy 

fraction",false, 

                         "  %d  %12.6e +/- %12.6e %c\n"); 

    if (nph > 0) { 

        if (nph > 1) { 

            

egsInformation("\n\n======================================================\n

"); 

            egsInformation(" Pulse height distributions\n" 

                           

"======================================================\n\n"); 

        } 

        else { 

            egsInformation("\n\n Pulse height distribution in region %d\n" 

                           

"======================================================\n\n", 

                           ph_regions[0]); 

        } 

        for (int j=0; j<nph; j++) { 

            if (nph > 1) egsInformation("\nRegion %d\n" 

                                            "----------------

\n\n",ph_regions[j]); 

            double f,df; 

            for (int i=0; i<pheight[j]->bins(); i++) { 

                pheight[j]->currentResult(i,f,df); 

                egsInformation("%g   %g   %g\n",ph_de[j]*(0.5+i), 

                               f/ph_de[j],df/ph_de[j]); 

            } 

        } 

    } 

    /* 

    EGS_Float Rmax = 20; EGS_Float dr = Rmax/200; 

    egsInformation("\n\n Electron/Photon fluence at back of geometry as a 

function of radial distance\n" 

                        

"===========================================================================

=\n"); 

    for(int j=0; j<200; ++j) { 

        double fe,dfe,fg,dfg; 

        eflu->currentResult(j,fe,dfe); gflu->currentResult(j,fg,dfg); 

        EGS_Float r1 = dr*j, r2 = r1 + dr; 

        EGS_Float A = M_PI*(r2*r2 - r1*r1); 

        EGS_Float r = j > 0 ? 0.5*(r1 + r2) : 0; 

        egsInformation("%9.3f  %15.6e  %15.6e  %15.6e  

%15.6e\n",r,fe/A,dfe/A,fg/A,dfg/A); 

    } 

    */ 

} 

void Tutor7_Application::getCurrentResult(double &sum, double &sum2, 

        double &norm, double &count) { 

    count = current_case; 

    norm = Etot > 0 ? count/Etot : 0; 

    score->currentScore(0,sum,sum2); 
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} 

int Tutor7_Application::startNewShower() { 

    Etot += p.E*p.wt; 

    int res = EGS_Application::startNewShower(); 

    if (res) { 

        return res; 

    } 

    if (current_case != last_case) { 

        if (nph > 0) { 

            for (int j=0; j<nph; j++) { 

                pheight[j]->setHistory(current_case); 

                int ireg = ph_regions[j]; 

                // In ausgab the scoring array is offset by 1 to include 

                // the reflected and transmitted as the first and last regions 

                EGS_Float edep = score->currentScore(ireg+1); 

                if (edep > 0) { 

                    int ibin = min((int)(edep/(current_weight*ph_de[j])), 

pheight[j]->bins()-1); 

                    if (ibin >= 0 && ibin < pheight[j]->bins()) { 

                        pheight[j]->score(ibin,1); 

                    } 

                } 

            } 

        } 

        score->setHistory(current_case); 

        eflu->setHistory(current_case); 

        gflu->setHistory(current_case); 

        last_case = current_case; 

    } 

    current_weight = p.wt; 

    return 0; 

} 

#ifdef BUILD_APP_LIB 

APP_LIB(Tutor7_Application); 

#else 

APP_MAIN(Tutor7_Application); 

#endif 

 

Appendix B 

The following is the input file used for 1 MeV monoenergetic electron simulations in EGSnrc. 

############################################################################

## 

# 

# MMC Simulation with monoenergetic point source. Designed for use with 

tutor7pp                                                                    

                        

# 

############################################################################

## 
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#---------------------------------------------------------------------------

---- 

:start run control: 

    ncase = 1e6 

geometry error limit = 100 

:stop run control: 

  

#---------------------------------------------------------------------------

---- 

:start run mode: 

    # egs_brachy has 3 run modes:  

    #        'normal', 'superposition', and 'volume correction only' 

    run mode = normal 

:stop run mode: 

  

#---------------------------------------------------------------------------

---- 

# This input block allows 'pegsless' runs 

:start media definition: 

    AE = 0.512 

    UE = 2.012 

    AP = 0.001 

    UP = 1.500 

     

    material data file = 

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/media/material.dat     

    #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before lib 

:stop media definition: 

  

#---------------------------------------------------------------------------

---- 

# A gold MMC  

:start geometry definition: 

  

    # An air box that will hold the entire geometry 

    :start geometry: 

        name = box 

        library = egs_glib        #this is a brachy_dose addition to egs++ 

#which allows files to be included into the 

#input file. Very useful for defining 

#commonly used geometries. 

        include file = 

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/phantoms/50cmx50c

mx50cm_box_xyz_air.geom 

        #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before 

lib 

    :stop geometry: 

  

# The volume in which we want to dose score (the gold MMC) 

    :start geometry: 

name = phantom 

        library = egs_glib 

        include file = 

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/phantoms/0.06cmx0

.06cmx0.06cm_0.03mm_goldMMC_1region.geom 

  

    :stop geometry: 
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# The source geometry 

    :start geometry: 

        name = seed 

        library = egs_glib 

        include file = 

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/sources/point_sou

rce/sphere/sphere.geom 

        #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before 

lib 

    :stop geometry: 

  

    # Inscribe the seed in the scoring phantom 

    :start geometry: 

        name = phantom_with_seed 

        library = egs_genvelope 

        base geometry = phantom 

        inscribed geometries = seed 

    :stop geometry: 

  

    # Inscribe the phantom+seed in the large air box 

    :start geometry: 

        name = final 

        library = egs_genvelope 

        base geometry = box 

        inscribed geometries = phantom_with_seed 

    :stop geometry: 

  

    # Source, phantom, and simulation geometries all need to be explicitly  

    # specified to egs_brachy 

  

    source geometries = seed 

  

    phantom geometries = phantom 

  

    simulation geometry = final 

  

:stop geometry definition: 

  

#---------------------------------------------------------------------------

---- 

:start volume correction: 

  

    # Scoring voxels which contain source geometries need to have their  

    # volumes corrected to accurately score dose 

  :start source volume correction: 

      correction type = correct 

      density of random points (cm^-3) = 1E8 

  

      # This include file statement defines a shape that encompasses the  

      # entire source geometry. 

      # Volume correction will only occur within the boundaries of this 

shape. 

      include file = 

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/sources/point_sou

rce/sphere/boundary.shape 
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      #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before 

lib 

  :stop source volume correction: 

  

:stop volume correction: 

  

#---------------------------------------------------------------------------

---- 

:start source definition: 

  

    # Typical egs++ source input block 

    :start source: 

        library = egs_isotropic_source 

        name = PointSource 

        charge = -1 

  

        include file = 

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/sources/point_sou

rce/sphere/sphere.shape 

        #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before 

lib 

  

        :start spectrum: 

            type = monoenergetic 

            energy = 0.1 

        :stop spectrum: 

    :stop source: 

  

    # The position of the source 

    :start transformations: 

        include file = 

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/transformations/s

ingle_seed_at_origin 

        #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before 

lib 

    :stop transformations: 

  

    # The source needs to be explicitly specified to egs_brachy.  

    # This should be the same as the 'name' defined in source input block 

above. 

    simulation source = PointSource 

  

:stop source definition: 

  

  

#---------------------------------------------------------------------------

---- 

:start scoring options: 

  

    # Many scoring options are available in egs_brachy.  

    # Please see the documentation for a full list. 

  

score tracklength dose = yes 

score energy deposition = yes 

    

    # The path to a file containing mass-energy absorption data for the  

    # relevant media in the simulation     
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    muen file = 

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/muen/brachy_gold_1.5MeV.mu

endat 

    #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before lib 

    # Specify which media dose is scored in 

    muen for media = Au 

  

#pulse height distribution (hopefully) 

pulse height regions = 1 

pulse height bins = 100 

  

#        :start spectrum scoring: 

#        type = surface count 

#        particle type = photon 

#        minimum energy = 0.000 

#        maximum energy = 0.5 

#        number of bins = 50 

#        output format = xmgr 

#   :stop spectrum scoring: 

  

:stop scoring options: 

  

#---------------------------------------------------------------------------

---- 

# Transport parameters 

include file = 

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/transport/low_energy_defau

lt 

#to run in batch, insert local value of $EGS_HOME/egs_brachy/ before lib 

  

  

################################ 

### AUSGAB OBJECTS 

################################ 

:start ausgab object definition: # Only 1 ausgab definition block allowed 

  

### Particle tracks 

:start ausgab object: 

name = tracks 

library = egs_track_scoring 

:stop ausgab object: 

  

### Dose scoring 

:start ausgab object: 

library = egs_dose_scoring 

name = my_dose_scoring 

region dose = yes 

volume = 0.000216 

dose regions = 1 

:stop ausgab object: 

  

:stop ausgab object definition: 

 

Analysis of different spectrum scoring options available: 
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Appendix C 

The following python script was used to read through output files from each of the four 

simulations and pull the histogram values out for constructing the coarsely binned response 

matrix. 

# Importing the required modules 

import numpy as np 

import matplotlib.pyplot as plt 

 

import linecache  

# Generating data for the heat map 

response_matrix = np.zeros(( 4 , 80 )) 

 

 

#Reading in energy deposition from 0.25MeV Monoenergetic Source 

with open("C:/Users/aeb11/OneDrive/Documents/ProjectLab 

(Koehler)/Dumb_Man's_Response_Matrix_0.25MeV.egslog", 'r') as file: 

    fileText = file.readlines() 

     

 

for i in range (408, 428, 1): 

    bin_data = linecache.getline("C:/Users/aeb11/OneDrive/Documents/Project 

Lab(Koehler)/Dumb_Man's_Response_Matrix_0.25MeV.egslog", i) 

    #print(bin_data) 

    energy = bin_data.split('   ') [0] 

    N = bin_data.split('   ') [1] 

                 
                 

                                                                  

                                                    

                                                                   

                          
               

                                                      

                                                        
                                                                                           

                              

                                                     
                                                                                     

        

                        
                                                         

                                                                 

                                                                     

           =
 + 

2
 =

2.563     1+7.466     1

2
0.3    0.1   

           = 1.00
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    response_matrix[0][i-408] = N 

     

    #print(energy) 

    #print(N) 

    #print(empty) 

 

#Reading in energy deposition from 0.50MeV Monoenergetic Source 

with open("C:/Users/aeb11/OneDrive/Documents/Project Lab 

(Koehler)/Dumb_Man's_Response_Matrix_0.50MeV.egslog", 'r') as file: 

    fileText = file.readlines() 

 

 

for i in range (408, 448, 1): 

    bin_data = linecache.getline("C:/Users/aeb11/OneDrive/Documents/Project 

Lab (Koehler)/Dumb_Man's_Response_Matrix_0.50MeV.egslog", i) 

    #print(bin_data) 

    energy = bin_data.split('   ') [0] 

    N = bin_data.split('   ') [1] 

    response_matrix[1][i-408] = N 

 

 

#Reading in energy deposition from 0.75MeV Monoenergetic Source 

with open("C:/Users/aeb11/OneDrive/Documents/Project Lab 

(Koehler)/Dumb_Man's_Response_Matrix_0.75MeV.egslog", 'r') as file: 

    fileText = file.readlines() 

 

 

for i in range (408, 468, 1): 

    bin_data = linecache.getline("C:/Users/aeb11/OneDrive/Documents/Project 

Lab (Koehler)/Dumb_Man's_Response_Matrix_0.75MeV.egslog", i) 

    #print(bin_data) 

    energy = bin_data.split('   ') [0] 

    N = bin_data.split('   ') [1] 

    response_matrix[2][i-408] = N 

 

#Reading in energy deposition from 1.00MeV Monoenergetic Source 

with open("C:/Users/aeb11/OneDrive/Documents/Project Lab 

(Koehler)/Dumb_Man's_Response_Matrix_1.00MeV.egslog", 'r') as file: 

    fileText = file.readlines() 

 

 

for i in range (408, 468, 1): 

    bin_data = linecache.getline("C:/Users/aeb11/OneDrive/Documents/Project 

Lab (Koehler)/Dumb_Man's_Response_Matrix_1.00MeV.egslog", i) 

    #print(bin_data) 

    energy = bin_data.split('   ') [0] 

    N = bin_data.split('   ') [1] 

    response_matrix[3][i-408] = N 

 

print(response_matrix) 
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