

SIMULATING PARTICLE
TRANSPORT WITHIN A

MICROCALORIMETER TO
UNFOLD THE DETECTOR

RESPONSE

By

Adam E. Brown

A thesis submitted in partial fulfillment of the
requirements for the degree of

Bachelor of Science

Houghton University

May 2023

Signature of Author…………………………………………….………………………………….
Department of Physics

………...

Dr. Katrina Koehler
Assistant Professor of Physics

Research Supervisor

………...

Dr. Brandon Hoffman
Professor of Physics

2

SIMULATING PARTICLE TRANSPORT WITHIN
A METALLIC MAGNETIC CALORIMETER TO

UNFOLD THE DETECTOR RESPONSE

By

Adam E. Brown

Submitted to the Department of Physics
on 10 May 2023 in partial fulfillment of the

requirement for the degree of
Bachelor of Science

Abstract

The measurement technique of Decay Energy Spectroscopy (DES) utilizes high-energy

resolution (7.5±0.2 eV FWHM at 6539 eV) [1] low temperature microcalorimeters to

measure the total energy of a decay from an embedded radioactive source. DES spectra are

histograms of the total decay energy thermalized in the absorber. Some of this energy is lost,

largely due to decay products escaping the absorber or energy stored in metastable states

(the latter depends on source preparation and is not considered in this work). This results

in a measurement of energy that is lower than the decay energy. The escape probability is

not constant as a function of initial decay energy but is dependent on the absorber material

and the source’s energy, type, location, and distribution—all of which form what we call the

detector response. In this work, the response matrix for a microcalorimeter is built using

EGSnrc—a Monte Carlo particle transport software—to simulate the energy deposition of a

point source of monoenergetic beta particles ranging from 10 keV to 2 MeV. This response

matrix may be used to deconvolve the detector response from a DES measurement so

systematic uncertainty can be reduced. This will result in a more precisely known beta decay

shape, important for fields such as nuclear medicine and testing theoretical descriptions of

beta decay at low energies.

3

Thesis Supervisor: Dr. Katrina Koehler

Title: Assistant Professor of Physics

4

TABLE OF CONTENTS

Chapter 1 ... 6

1.1. What Are Beta Decay and Electron Capture?... 6

1.1.1. Original Experiments and Discovery .. 6

1.1.2. Theory of Beta Decay and Electron Capture ... 10

1.2. Decay Energy Spectra .. 11

1.2.1. Measuring Decay Energy Spectra ... 11

1.2.2. Physical Measurements and Interpretations ... 13

Chapter 2 ... 16

2.1. Low Temperature Detectors ... 16

2.1.1. Principles of Microcalorimeters .. 17

2.1.2. Cryogenics .. 18

2.1.3. Transition-Edge Sensors .. 20

2.1.4. Metallic Magnetic Calorimeters ... 22

Chapter 3 ... 24

3.1. EGSnrc ... 24

3.2. The Physics of Particle Transport Simulation .. 25

3.2.1. Photon Interactions .. 25

3.2.2. Electron Interactions ... 28

3.3. Response Matrix .. 30

3.3.1. Theory Behind Response Matrix ... 32

3.4. Assumptions .. 33

Chapter 4 ... 34

4.1. Simulation Parameters ... 34

4.1.1. Deconstruction of an Input File ... 34

4.1.2. Monoenergetic Simulations .. 39

4.2. Response Matrix .. 40

Chapter 5 ... 41

5.1. Construction of Response Matrix .. 41

5.1.1. Simulation Analysis .. 41

5.1.2. Inverse of the Response Matrix ... 43

Chapter 6 ... 44

6.1. Conclusions and Future Plans ... 44

Appendix A .. 45

Appendix B .. 56

Appendix C .. 63

5

TABLE OF FIGURES

Figure 1. Continuous distribution of beta particle energies emitted from Radium E
(210Bi) decay. .. 7

Figure 2. Comparison of different values of 𝜇 (neutrino rest mass) on the shape of a beta
spectrum near the endpoint energy 𝐸0. ... 9

Figure 3. Depiction of beta decay.. 10

Figure 4. Schematic of the internal measurement mode for an ideal absorber. 12

Figure 5. Comparison of different methods of spectroscopy for the alpha decay of 239Pu
and 240Pu. .. 13

Figure 6. Beta spectrum of 14C, measured with an MMC (blue), and calculated spectrum
using the code BetaShape (red). ... 14

Figure 7. Comparison of resolving capabilities of a MMC (green) and a HPGe (red)
gamma measurement. ... 17

Figure 8. An ideal calorimeter. ... 18

Figure 9. (Left) Schematic of an adiabatic demagnetization refrigerator (ADR). 19

Figure 10. (Left) Schematic of a 3He/4He dilution refrigerator []. (Right) Phase diagram
of liquid 3He/4He mixture. ... 20

Figure 11. The superconducting to normal phase transition of a Mo/Cu film. 21

Figure 12. Electrical schematic of a TES coupled to a SQUID. ... 22

Figure 13. Linear attenuation coefficient of as a function of photon energy for NaI. 26

Figure 14. Diagram depicting the process of electron-positron pair production. 26

Figure 15. (Left) Depiction of Compton Scattering. ... 27

Figure 16. (Left) Depiction of the photoelectric absorption. ... 28

Figure 17. Depiction of electron energy loss via Bremsstrahlung. .. 29

Figure 18. Plot of X-ray mass attenuation coefficients as a function of energy for Au. ... 31

Figure 19. Particle tracks from an ENSnrc simulation of monoenergetic electrons
travelling through an Au microcalorimeter absorber. ... 39

Figure 20. Histogram of energy escape of electrons from an Au absorber. 40

Figure 21. Four energy deposition histograms created from simulating various
monoenergetic electron sources inside a 0.6 × 0.6 × 0.6 mm3 Au absorber. 42

Figure 22. Comparison of 36Cl beta spectra with the simulated measured histogram
(left) and the deconvolved histogram (right). ... 43

6

Chapter 1

INTRODUCTION

1.1. What Are Beta Decay and Electron Capture?

1.1.1. Original Experiments and Discovery

The beginning of the 20th century marked a notable expansion of the scientific community’s

understanding of the atomic nucleus, especially regarding nuclear decay. After the initial

discovery of radiation in 1896 by Henri Becquerel [2] using uranium—and subsequent

experimentation carried out by Marie Curie exploring the basic properties of radioactive

materials—the process of classifying different types of radiation began. Ernest Rutherford

noticed changes in electrical current when covering different uranium salts (uranium sulfate

and uranium oxide) with varying thicknesses of metal [3]. Rutherford noticed the current

was significantly reduced with only 2 × 10−3 cm of aluminum, but the current did not reduce

appreciably until the thickness was 6 × 10−3 cm. This led him to conclude there are two

types of radioactive emissions from uranium, which he called alpha rays and beta rays,

differentiated by their penetrating power. Alpha rays have very low penetrating power and

can be blocked by a thin sheet of paper, and beta rays have more penetrating power but are

still stopped by a thin sheet of aluminum. It was later shown by Becquerel in 1900 [4] that

the beta rays were actually electrons by comparing their mass-to-charge ratios, using the

same method that J. J. Thomson used to originally identify the electron: deflecting a cathode

ray with an electric field. Because the beta rays deflected in the same way as the electrons

deflected, Becquerel concluded that beta rays were electrons.

However, further study of beta decay led to an interesting discrepancy that would become

fundamental to our understanding of nuclear structure and fundamental particles. In alpha

and gamma decay, the alpha particle or gamma ray emitted is monoenergetic: dependent on

the mass difference of the parent and daughter nucleus or the nuclear deexcitation between

nuclear energy levels, respectively. Thus, it seems a reasonable conclusion that beta particles

emitted from beta decays should exhibit the same property. However, James Chadwick

showed in his 1914 experiment that the beta particle was emitted with a continuous

7

spectrum of energies [5] Charles D. Ellis and William A. Wooster further provided proof of

the continuous beta decay spectrum with their investigation of Radium E (Bismuth-210) [6],

as shown in Figure 1.

Figure 1. Continuous distribution of beta particle energies emitted from
Radium E (210Bi) decay. Instead of beta decays emitting monoenergetic beta
particles, a continuous spectrum of energies is allowed. This seemed to
violate the conservation of energy and momentum, providing motivation for
scientist to reconsider their understanding of nuclear decay. Taken from Ref.
[6].

From this discovery arose a supposed contradiction: if beta decay was simply electron

emission, then the energy should have a single defined value due to the conservation of

momentum and energy. If the only decay products were the daughter nucleus and beta

particle, then they would have equal and opposite momenta after the decay. This would

result in a monoenergetic beta spectrum. This measured continuous spectrum of beta

emission energies seemed to violate the conservation of energy.

It was not until 1930 that progress on this beta spectrum issue was made when Wolfgang

Pauli proposed the existence of another particle emitted during beta decay that had thus far

been undetected [7]. This particle would account for the missing energy seemingly lost, since

momentum conservation with three particles does not have a single solution. He

8

characterized this particle to be neutral, very low mass, spin-
1

2
, obey the exclusion principle,

and have extremely high penetrating power. Many of these assumptions were informed by

the fact that this particle had never before been detected. The mass had to be much smaller

than that of a proton, with a first limit on the particle’s mass of less than 1% the mass of the

proton [7]. This is because the Q value, or mass difference between the parent and daughter

nucleus, is known for a beta decay. If the particle were more massive, the difference between

the Q value and the measured energies would be much more pronounced, as a noticeable

amount of the decay energy would be taken away by the unseen particle in the form of mass.

The same goes for its neutral charge: if it were charged, its electromagnetic interactions with

the environment would be noticed, and an additional charged product would violate the

conservation of charge of the nuclear reaction.

Pauli’s proposed particle would factor into Enrico Fermi’s landmark theory of beta decay

[8,9] published in 1934, where he posited the existence of the neutrino. He was able to

demonstrate that the mass of the neutrino must be either zero or very small in comparison

to the mass of an electron. He did so by determining the theoretical shape of a beta spectrum

and examining the effect of different neutrino rest masses on the shape of the curve near the

endpoint energy of the reaction and discovered that the greatest agreement with empirically

found curves was when the mass of the neutrino was zero (see Figure 2).

9

Figure 2. Comparison of different values of 𝜇 (neutrino rest mass) on the
shape of a beta spectrum near the endpoint energy 𝐸0 . The greatest
agreement with physical measurements was when 𝜇 = 0, suggesting the rest
mass of the neutrino is either zero or extremely low. Understanding the
precise shape of measured beta spectra, especially near the endpoint energy,
allows for experimental determination of the neutrino rest mass. Taken from
Ref. [9].

One problem with this theory is that experimental validation of the existence of the neutrino

seemed to be nearly impossible, due to it having such weak interactions with matter. In 1956,

neutrinos were finally detected in the Cowan-Reines experiment [10], which was based off

the unique signatures that occur when a neutrino does interact with a proton. Despite the

reaction probability being extremely low, Fermi’s theory predicts that an electron

antineutrino could interact with a proton to create a neutron and a positron. Positron

annihilation with an electron creates two coincident gamma rays, and neutron capture by

certain nuclei will result in an excited nuclear state, which quickly de-excites via the emission

of a gamma ray. Detecting the coincidence of these two events provides a method to validate

the existence of the neutrino particle. To achieve this, a nuclear reactor was used to provide

a large neutrino flux, which would theoretically come from the large number of beta decays

of daughter nuclei following the fission of 235U. The neutrino flux was incident upon two

tanks each containing 200 L of water, which acted as sources of huge numbers of protons

(1.3 × 1028), increasing the chances of an interaction occurring. To absorb the product

neutron, 40 kg of cadmium chloride (CdCl2) was dissolved in the water. Cadmium is an

effective neutron absorber, and after neutron capture occurs, the product nucleus is in an

excited nuclear state that emits a gamma ray to de-excite, shown by Equation (1).

 𝑛 + 108Cd → 109Cd* → 109Cd + 𝛾 (1)

 Liquid scintillators between the water tanks were used for the detection of the gamma rays

from both positron annihilation and neutron capture. After months of data collection, the

experimental data showed evidence of neutrino existence, with a rate of three interactions

occurring per hour.

10

1.1.2. Theory of Beta Decay and Electron Capture

Our current understanding of beta decay and electron capture stems from these historical

discoveries. Beta decay is a type of radioactive decay where a beta particle (𝛽− or 𝛽+) is

emitted from the nucleus. In 𝛽− decay, a neutron (𝑛) within a nucleus is converted into a

proton (𝑝) and an electron (𝑒−) and electron antineutrino (�̅�𝑒) are emitted, as shown in

Equation (2),

 𝑛 → 𝑝 + 𝑒− + �̅�𝑒 . (2)

Figure 3 depicts a 𝛽− event, where an element with atomic number X and mass number N

decays to an element with the same mass number, but an atomic number increased by one

to Y.

Figure 3. Depiction of beta decay. (Left) The parent nucleus has N nucleons.
Through 𝛽− decay, the highlighted neutron decays into a proton, maintaining
the mass number but increasing the atomic number of the nuclei by one, and
in the process releasing an 𝑒− and �̅�𝑒. (Right) The red arrows indicate that
the decay products have momentum. The kinetic energy of the products can
be measured to form a 𝛽− spectrum.

In a decay similar to 𝛽− decay, 𝛽+ decay is the process whereby a proton is converted to a

neutron, emitting an anti-electron (positron) and an electron, as seen in Equation (3):

11

 𝑝 → 𝑛 + 𝑒+ + 𝜈𝑒 , (3)

where 𝑒+ is a positron and 𝜈𝑒 is the electron neutrino. Both forms of 𝛽 decay are facilitated

by the weak nuclear force.

Electron capture is another example of weak decay in nuclei. During electron capture, a

proton within the nucleus absorbs one of the atomic electrons and is converted into a

neutron, resulting in the emission of an electron neutrino. Electrons in the s orbital are most

likely to be subject to electron capture, while those in orbitals with higher angular

momentum, such as p or d, are less likely.

 𝑝 + 𝑒− → 𝑛 + 𝜈𝑒 . (4)

See Table 1 for a more detailed description of the different conservation laws for beta decays

and electron capture. In addition, charge conservation, baryon number, and lepton number

are also conserved. The baryon numbers of nucleons are 1, while electrons and positrons

have baryon numbers of 0. The lepton number of electrons and neutrinos is 1, while their

antiparticles (positrons and antineutrinos) have a lepton number of -1; nucleons have a

lepton number of 0.

Table 1: Conservation Laws in Different Types of Weak Decays

 𝛽− Decay:

𝑛 → 𝑝 + 𝑒− + �̅�𝑒

 𝛽+ Decay:

𝑝 → 𝑛 + 𝑒+ + 𝜈𝑒

Electron Capture:

𝑝 + 𝑒− → 𝑛 + 𝜈𝑒

Electric Charge 0 = 1 − 1 + 0 1 = 0 + 1 + 0 1 − 1 = 0 + 0

Baryon Number 1 = 1 + 0 + 0 1 = 1 + 0 + 0 1 + 0 = 1 + 0

Lepton Number 0 = 0 + 1 − 1 0 = 0 − 1 + 1 0 + 1 = 0 + 1

1.2. Decay Energy Spectra

1.2.1. Measuring Decay Energy Spectra

Decay Energy Spectroscopy (DES) is a measurement technique where a radioactive source

is embedded inside an absorber, which is thermally coupled to a very sensitive thermometer.

In DES, the total energy of decay products (i.e., X-rays, gamma rays, and kinetic energy of the

daughter nucleus and electrons) are thermalized within the absorber. The thermalization of

12

the decay energy of a source internal to an absorber is depicted in Figure 4. The energy from

all the decay products is thermalized within the time period of thermal diffusion in the

detector, creating a single change in temperature for the entire decay energy, rather than for

the energy of individual decay products. However, this excludes energy of radiation that

escapes the absorber, such as neutrinos and high energy photons. In contrast, if the source

were external to the absorber, only the energy of a single decay product (i.e., X-ray,

𝛼 particle, electron) would be thermalized.

Figure 4. Schematic of the internal measurement mode for an ideal absorber.
When the source decays, all energies of all decay products are thermalized
by the absorber and converted to heat, causing the temperature to increase.

This change in temperature is measured with a microcalorimeter: a type of Low

Temperature Detector (LTD). There are different types of microcalorimeters, such as

transition-edge sensors (TES) or metallic magnetic calorimeters (MMC), but all are designed

to measure extremely small changes in temperature by exploiting the electrical or magnetic

properties of materials transitioning between superconducting and normal phases. When

operated near the critical temperature of the phase transition, any small change to a

material’s temperature results in a measurable change in some other property, such as

resistance for TESs or magnetization for MMCs. When this change is read out electronically,

13

it results in a pulse whose amplitude is proportional to the energy deposited from a single

decay. A decay energy spectrum is a histogram of many of these pulses.

DES offers not only excellent energy resolution, but also has the advantage of measuring total

decay energy independent of decay path. This results in a simplified spectrum, making

analysis of total activity by isotope less prone to systematic bias, important for determining

radionuclide composition. This effect is shown in Figure 5.

Figure 5. Comparison of different methods of spectroscopy for the alpha
decay of 239Pu and 240Pu. The red region shows conventional alpha-particle
spectroscopy, where only the energy of an emitted alpha particle is
measured. The black region shows a DES measurement of each isotope,
peaking at total decay energy for the alpha decay. Taken from Ref. [11].

1.2.2. Physical Measurements and Interpretations

Several DES projects measuring weak decays with MMCs have been developed. These

include MetroMMC for exploring electron capture schemes [12] and MetroBeta for beta

spectrum shape [13, 14]. MetroBeta studied four beta decaying radionuclides: 151Sm (1st

forbidden non-unique; Q = 76.4 keV), 14C (allowed; Q = 156.476 keV), 99Tc (2nd forbidden

non-unique; Q = 293.8 keV), and 36Cl (2nd forbidden non-unique; Q = 709.53 keV). Of these,

just the beta spectrum of 14C has been measured (See Figure 6).

14

Figure 6. Beta spectrum of 14C, measured with an MMC (blue), and calculated
spectrum using the code BetaShape (red). Three discrete photon lines from
a 109Cd source external to the detector were used for energy calibration. The
discrepancy between experimental and theoretical spectra in the low-energy
region highlighted motivates further exploration into interpretation of
physical microcalorimeter measurements. Figure taken from Ref. [13].

The energy resolution achieved (1 keV FWHM at 22 keV) was severely degraded by pile-up.

Results showed good agreement with the theoretical beta spectrum, except in the low-

energy range where most of the histogram bins were overpopulated compared to prediction.

This discrepancy is possibly a result of the energy of certain events not being completely

thermalized, resulting in a lower energy deposited in the detector. Other possibilities include

imperfect heat transfer between the absorber and the microcalorimeter, resulting in

nonlinear energy loss, or a lack of fidelity in the theoretical prediction of the beta spectrum

for low energies. Determining the effect of energy escape on microcalorimeter

measurements of 𝛽− decay will enable more precise determinations of the 𝛽− spectrum for

the MetroBeta project and other beta spectroscopy experiments.

Analytically determining the probability of energy escape from an absorber is nearly

impossible. This is because the escape probability is not constant as a function of initial decay

energy but is dependent on the absorber’s material and size, as well as the source’s energy,

type, location, and distribution. This work will simulate the energy deposition of beta

15

particles within an absorber using EGSnrc—a Monte Carlo simulation software—in order to

quantify the escape probability and the goal of removing this effect from microcalorimeter

measurements.

By iterating through monoenergetic electrons ranging from 10 keV to 2 MeV, the response

matrix for an MMC detector can be constructed. This response matrix may be used to

deconvolve the detector response from a DES measurement, which will reduce the

systematic uncertainty in MMC measurements of beta spectra, particularly for low energies.

16

Chapter 2

DETECTORS

2.1. Low Temperature Detectors

The field of low temperature calorimetry and cryogenic detectors first emerged in 1984 out

of a need for enhanced sensitivity from detectors, specifically to investigate fundamental

issues in nuclear physics, such as the mass of the electron neutrino. When compared with

semiconductor detectors, like High Purity Germanium(HPGe) or Silicon, LTDs have vastly

superior energy resolutions (see Figure 7), making them a desirable choice for many

experiments. The energy resolution (∆𝐸) of a detector is proportional to its temperature (T)

times the square root of its heat capacity (C), as shown in Equation (5).

 ∆𝐸 ∝ 𝑇√𝐶, (5)

This holds throughout the energy range a detector is applied to. While semiconductor

detector energy resolution approaches a physical limit of 8-10 keV at full-width-half-

maximum (FWHM) for 5 MeV alpha particles, which is a resolving power of around 500 [15],

low temperature 𝛼 detectors yield resolutions less than 1 keV FWHM for 5.3 MeV alphas

(resolving power of 5300) [16]—an order of magnitude better energy resolution. X-rays

energy resolution of ∆𝐸𝐹𝑊𝐻𝑀 = 3.4 eV at 6.5 keV has been demonstrated [17, 18], as has

gamma energy resolution of 22 eV FWHM at 97.43 keV [19]. The high energy resolution of

microcalorimeters can be exploited to study both electron capture and 𝛽− decay [20,21,22],

allowing for extremely precise measurements of the spectral shape.

17

Figure 7. Comparison of resolving capabilities of a MMC (green) and a HPGe
(red) gamma measurement. The microcalorimeter can resolve the gamma
peaks from169Yb and 168Tm, while the HPGe detector cannot. Taken from Ref.
[23].

2.1.1. Principles of Microcalorimeters

The detector is composed of three parts: an absorber, a calorimeter, and a heat sink [24];

This ideal system is shown in Figure 8. For any measurement to be made, a particle must

deposit its energy in the absorber in the form of heat. The particle may either be incident

upon the absorber, or the particle may originate from a decay event within the absorber. As

the absorber thermalizes all of the particle’s energy, the absorber’s temperature increases.

A thermal link to an extremely sensitive calorimeter allows for the heat of a single decay to

be measured via the intrinsic temperature change in the absorber. This entire system is then

weakly linked to a heat sink, allowing the absorber and calorimeter to slowly return to a

baseline temperature. A good absorber has high stopping power to ensure that no energy

from events escapes, and it has a low heat capacity so that there is a greater change in the

absorber’s temperature from the heat of a single event.

18

Figure 8. An ideal calorimeter. On the left, an absorber with heat capacity C
is connected to a heat sink of temperature 𝑇0 via a thermal link with thermal
conductivity G. On the right, an instantaneous input of energy 𝐸0 will raise
the calorimeter’s temperature by ∆𝑇 = 𝐸0 𝐶⁄ , and it will then decay back to
its initial temperature with a time constant 𝜏 = 𝐶 𝐺⁄ . Figure modified from
Ref. [24].

2.1.2. Cryogenics

Both transition-edge sensors and metallic magnetic calorimeters require cryogenics for

operation. The first reason is to reduce thermal noise in measurements, which increases with

increasing temperature. The second is to ensure that the sensors remain in the

superconducting phase. Any LTD design must make considerations for cryogenics to keep

the system in an acceptable temperature range, usually less than 400 mK for a TES or less

than 50 mK for a MMC. To ensure sufficient cooling, a variety of different cryostat systems

have been used for LTDs, including 3He/4He dilution refrigerators and adiabatic

demagnetization refrigerators (ADR).

Adiabatic Demagnetization Refrigerators: An ADR cools by using the thermodynamic

properties of paramagnetic materials in magnetic fields. Figure 9 depicts a simplified ADR

design. When a paramagnetic solid, referred to as a “salt pill”, is placed in a strong magnetic

field, the magnetic moments of the molecules in the pill align with the field, decreasing the

entropy of the system. When the strength of the field decreases, the spins in the salt pill

become more disordered and absorb heat to increase the entropy, resulting in the cooling of

the pill.

 Absorber

C

19

Figure 9. (Left) Schematic of an adiabatic demagnetization refrigerator
(ADR). This commercial design uses both a liquid nitrogen and liquid helium
bath to keep the detector at a temperature of 4.2 K. Two paramagnetic salt
pills, GGG (Gadolinium-Gallium-Garnet) and FAA (Ferric-Ammonium-Alum),
are in contact with the helium bath via heat switches (S). A detector is
suspended from the FAA salt pill. Figure taken from Ref. [29]. (Right) Picture
of ADR used for DES. The ADR is used to ensure that the LTDs operate in the
correct temperature range.

An ADR works cyclically to cool the environment to temperatures less than 1 mK. The whole

system is thermally shielded by a liquid N2 bath and radiation shields throughout the cooling

process. In the first part of the cycle, the paramagnetic salt pills are thermally isolated from

the liquid H2 heat sink and a magnetic field is applied to the solid. As the spins align in the

salt and the entropy increases, the salt heats up. Then, the salt pills are thermally connected

via switches to the heat sink and cooled down back close to their starting temperature.

Finally, the thermal link to the bath is broken and the magnetic field is decreased. To increase

in entropy, the salt pills absorb thermal energy from the experimental platform and detector,

resulting in cooling of both.

Dilution Refrigerator: A 3He/4He dilution refrigerator uses a mixture of 3He and 4He as the

cooling agent. When a mixture of these isotopes is cooled beneath 870 mK, it undergoes a

20

phase separation, creating a concentrated phase of nearly pure 3He and a dilute phase of

about 6.6% 3He and 93.4% 4He (see Figure 10).

Figure 10. (Left) Schematic of a 3He/4He dilution refrigerator [25]. (Right)
Phase diagram of liquid 3He/4He mixture. The phase separation begins at
approximately 870 mK, leading to a concentrated phase of 3He (green region)
and a dilute phase of 6.6% 3He and 93.4% 4He (yellow region). Fermi liquids
and superfluids are the states of matter describing 3He and 4He at extremely
low temperatures, respectively. This is another cryostat option to achieve the
low temperatures necessary for DES measurements using LTDs. Taken from
Ref. [26].

In the mixing chamber of the cryostat, these two phases are in equilibrium, creating a phase

boundary. When 3He enters this chamber, it must cross the phase boundary and become

diluted, an endothermic process that removes heat from chamber environment and serves

as the primary method of the extreme cooling.

2.1.3. Transition-Edge Sensors

The first demonstration of using the superconducting phase transition for microcalorimetry

was in 1941, when D. H. Andrews applied a current to a tantalum wire that had been cooled

21

down to its superconducting phase and was able to measure the resistance change in the

material caused by infrared radiation [27]. The same researchers then measured the voltage

pulses from bombarding a superconducting niobium nitride strip with alpha particles.

When certain materials are cooled below a critical temperature 𝑇𝐶 that varies by material,

they transition into a superconducting state with zero electrical resistance. This phase

transition into superconductivity can be extremely sharp, creating a sort of edge, as seen in

Figure 11.

Figure 11. The superconducting to normal phase transition of a Mo/Cu film.
Near 96 mK, a small change in temperature will cause a measurable change
in the film’s resistance, due to the fact that the transition is continuous. This
is used in TESs to translate energy deposition to electronic pulses. Figure
taken from Ref. [28].

The temperature control is done with a combination of temperature controls in the cryostat

and either voltage or current biasing, which sets constant electronic operating conditions in

the device.

One of the initial challenges in developing TES detectors was obtaining an accurate signal

readout, especially in a device with such low impedance. Whenever a TES was connected to

a current bias, joule heating would drive the detector out of its superconducting state, a

process called positive electrothermal feedback. However, this issue was resolved by voltage

biasing the TES. With a constant voltage, when the temperature of the absorber increases

22

from an energy deposition, the resistance goes up, lowering the current, causing the joule

heating to go down. This returns the device to its equilibrium temperature, a process called

negative electrothermal feedback. The change in current from an energy deposition is

inductively coupled to a superconducting quantum interference device (SQUID) current

amplifier. The current pulse through the TES coil changes its magnetic field and thus the

input magnetic flux to the SQUID, whose output is easily amplified and measured (see Figure

12).

Figure 12. Electrical schematic of a TES coupled to a SQUID. The design is
such that the TES is voltage biased by the current source, 𝐼bias, and the load
resistor 𝑅𝐿 . Whenever an event is absorbed by the TES, the extra heat causes
the TES resistance to increase and current to drop. This change in current is
inductively coupled to a SQUID, whose output is then amplified even further.

The breakthrough of TES-SQUID coupling has made TES detectors a viable option for current

experimentation. The biggest advantages in their use are the spectral detail and energy

resolution. TES detectors are now being developed for measurements of various radiation,

including alpha particles, beta particles, and photons ranging from eVs to MeVs of energy

[16, 17, 28]. TESs used for DES measurements of 𝛼 decay have demonstrated excellent

energy resolution, with ∆𝐸𝐹𝑊𝐻𝑀 = 7.5 ± 0.2 eV for 6539 eV [1].

2.1.4. Metallic Magnetic Calorimeters

Another common type of low temperature detector is a metallic magnetic calorimeter

(MMC). Rather than dealing with the electrical properties of superconducting materials,

23

MMCs use their magnetic properties. These properties are very strongly dependent on

temperature within many materials, and thus form a good candidate for precise

thermometry. The idea of low-temperature magnetic calorimetry was first proposed in the

thesis of W. Seidel, from the Technical University in Munich, in 1986 [29, 30]. Various

experiments demonstrated the usage of magnetization in a dielectric material to measure

small energy doses to an absorber. In 1993, it was proposed to use metallic host materials

instead, because the stronger interactions between magnetic moments and conduction

electrons in the metal meant the detector response would be faster. A typical MMC has a

paramagnet contained within a small magnetic field. This is placed in strong thermal

contact with an absorber. When energy is deposited in the absorber, it increases in

temperature, which changes the magnetization of the paramagnet. This can be read by a

SQUID magnetometer. The relationship between a change in magnetization 𝛿𝑀 caused by

an energy absorption of amount 𝛿𝐸 is

 𝛿𝑀 =
𝜕𝑀

𝜕𝑇
𝛿𝑇 =

𝜕𝑀

𝜕𝑇

𝛿𝐸

𝐶TOT
, (6)

where 𝐶TOT is the total heat capacity of the absorber and the paramagnetic thermometer.

MMCs have demonstrated excellent energy resolution, with ∆𝐸𝐹𝑊𝐻𝑀 = 3.4 eV for X-ray

energies up to 6.5 keV [18] and ∆𝐸𝐹𝑊𝐻𝑀 = 340 eV for 122 keV gamma rays emitted from a

57Co source [29]—on par with other types of low temperature detectors such as the TES.

24

Chapter 3

SIMULATIONS FOR A DETECTOR RESPONSE MATRIX

3.1. EGSnrc

The Electron Gamma Shower (EGSnrc) system is a software application designed for the

Monte Carlo simulation of transport of different types of ionizing radiation through a user-

defined geometry. The Monte Carlo technique is a widely used scientific tool for problems

that are often too difficult to solve analytically. The Monte Carlo method can require high

computational power, and the accuracy of results is dependent on the input parameters, but

in certain cases where physical experimentation is too time-consuming or costly, Monte

Carlo simulation provides a reasonable alternative. In this technique, particles are initialized

with a certain energy and physical distribution. These particles are propagated

probabilistically through the material, using libraries of cross sections for various

interactions. For each interaction, the collision particles leave with an energy and direction

chosen from distributions. This process is continued until all particles are either absorbed

or leave the geometry of interest [31].

EGSnrc is capable of simulating electrons, photons, and positrons with kinetic energies from

1 keV to several hundreds of GeV [32]. Radiation transport may be simulated within any

element, compound, or mixture. There are two types of particle transport: charged and

uncharged. Uncharged particle transport refers to the interactions taken by uncharged

particles through a medium, such as electromagnetic radiation, while charged refers to the

transport of charged particles, such as electrons and positrons. Because electrons and

positrons differ only by having opposite charges, both are referred to as “electrons” for

simplicity when discussing charged particle transport. EGSnrc has very high accuracy for

electron and photon transport simulations based on cross-section data.

EGSnrc uses the physics of Compton scattering, electron-positron pair production, Rayleigh

scattering, and photoelectric effect for photon transport, and it uses inelastic collisions and

radiative energy loss for electron transport. One limitation of the software is the ability to

25

track electron transport event-by-event. In cases where electrons have high kinetic energy,

each simulated particle undergoes hundreds of thousands of interactions with the

surrounding atoms during the process of slowing down. Modern computing power is

insufficient to completely track every event that occurs for one electron, much less the

thousands of initial histories that are simulated. The solution employed by EGSnrc is called

the “condensed history” technique [33], where the cumulative effect of large numbers of

these electron transport and collision processes are condensed into a single “step”. The state

of subsequent steps is determined by calculating the particle’s total change in energy,

velocity, and position. This technique makes Monte Carlo simulation for a charged particle’s

transport possible [34].

Other software packages exist that also employ a Monte Carlo method to simulate particle

transport, such as MCNP, GEANT4, and PENELOPE. EGSnrc and PENELOPE have comparable

accuracy for particle transport [35], while GEANT4 can achieve similar agreement under

certain parameters, but needs further improvement to its modelling.

3.2. The Physics of Particle Transport Simulation

3.2.1. Photon Interactions

Photons interact with matter via four processes: pair production, Compton scattering, photo-

electric absorption, and Rayleigh scattering. All these are used for the simulation of

uncharged particle transport.

Pair Production: Pair production is the process whereby an electron-positron pair is

created when a photon passes through the electromagnetic field created by atomic nuclei

and surrounding electrons in the medium, as seen in Figure 14. The energy of the photon (E)

can be converted into particle mass (m) described by Einstein’s equation

 𝐸 = 𝑚𝑐2, (7)

using the speed of light (c). From this mass-energy relation, it is clear that for pair production

to occur, the photon must have energy higher than the sum of the rest mass energies of the

electron-positron pair. Since both the electron and positron have a rest mass of 0.511 MeV,

26

the photon must have an energy of above 1.022 MeV. Once above this energy threshold, pair

production dominates over other photon interactions, as shown in Figure 13

Figure 13. Linear attenuation coefficient of as a function of photon energy for
NaI. The total attenuation coefficient has contributions from pair production,
Compton scattering, and photoelectric absorption. Notice how pair
production dominates at higher energies, while photoelectric absorption
dominates at low energies. Taken from Ref. [36].

Figure 14. Diagram depicting the process of electron-positron pair
production. As a photon with sufficient energy passes through the
electromagnetic field of an atom, it can be converted into an electron-
positron pair with nearly collinear velocities. The energy of the products is
deposited in an absorber during a DES measurement.

27

Compton Scattering: Compton scattering is a scattering process of photons with charged

particles, usually electrons. In this interaction, the photon transfers some of its energy,

resulting in a lower scattered photon energy and a recoil electron. Because the energy of a

photon is inversely proportional to its wavelength, the change in energy can described

mathematically as a function of the scattering angle 𝜃, determined by:

𝜆′ − 𝜆 =

ℎ

𝑚𝑒𝑐
(1 − cos 𝜃),

(8)

where 𝜆 is the photon’s initial wavelength, 𝜆′ is the scattered wavelength, ℎ is Planck’s

constant, 𝑚𝑒 is the rest mass of an electron, and c is the speed of light. The process is shown

in Figure 15.

Figure 15. (Left) Depiction of Compton Scattering. An incident photon with
wavelength 𝜆 interacts with an electron, scattering at an angle 𝜃 with some
larger wavelength 𝜆′ while the electron conserves momentum by recoiling at
some velocity v. (Right) An EGSnrc simulation shows a photon undergoing
Compton scattering and depositing energy within an Au absorber in the
highlighted section.

Photoelectric Absorption: In the photoelectric effect, photons transfer all their energy to

atomic electrons. When an incident photon to a material has more energy than the binding

energy of an electron to that material, then the electron is likely to be ejected. Any additional

energy the photon has above the binding energy of the electron becomes the electron’s

kinetic energy (see Figure 16).

28

Figure 16. (Left) Depiction of the photoelectric absorption. Photons incident
upon atomic electrons are absorbed if their energy is greater than the
binding energy of the electron. The electrons are then freed from the atom
and are emitted. Within an absorber, the electrons then deposit their energy.
(Right) An EGSnrc simulation shows a photon undergoing photoelectric
absorption within an Au absorber in the highlighted section. Notice how the
black photon track ends in a red electron track, and the electron deposits its
energy in the absorber.

This phenomenon is primarily dominant for low-energy photons.

Rayleigh Scattering: Rayleigh scattering is a form of elastic scattering of light by particles

much smaller than the incident wavelength. Because the collision is elastic, the overall effect

is to simply change the direction of the incident light while its energy remains approximately

the same. The amount of scattering is inversely proportional to the fourth power of the

wavelength of the photon. This is the only of the four mentioned photon interactions that

does not directly transfer photon energy to electrons.

3.2.2. Electron Interactions

Electrons lose energy as they traverse a medium via two processes: radiative energy loss and

inelastic collisions with atomic electrons. The radiative energy loss primarily occurs by

bremsstrahlung and positron annihilation, while inelastic electron collisions with atomic

electrons lead to atomic excitation and ionization, which can then result in the emission of x-

rays and electrons during atomic de-excitation.

Radiative Energy Loss: As electrons traverse through a material, radiative energy loss

occurs primarily via two processes: bremsstrahlung and positron annihilation.

29

Bremsstrahlung is electromagnetic radiation that is produced by the deceleration of an

electron by interacting with the electric fields of other charged particles, such as other

electrons or an atomic nucleus. Deceleration causes a photon to be emitted with energy equal

to the loss in kinetic energy of the initial electron after interacting with a charged particle.

Bremsstrahlung is the dominant mechanism of electron energy loss at high energies, and

transfers this energy from electrons back to photons. Figure 17 represents the

Bremsstrahlung process.

Figure 17. Depiction of electron energy loss via Bremsstrahlung. The initial
electron with energy 𝐸1 passes by and decelerates in the electric field of the
charged nuclei. The electron loses kinetic energy and continues with energy
𝐸2 , while a photon is emitted with energy 𝐸 = ℎ𝑓 = 𝐸1 − 𝐸2 to conserve
energy.

Electron-positron annihilation can be viewed as the reverse process of pair-production. In

the annihilation process, a collision between an electron and its anti-particle (the positron)

results in their destruction and the emission of energetic photons. Due to the laws of energy

and momentum conservation, the creation of a single photon is forbidden. In the most

30

common case, two photons are created, each with energy equal to the rest mass of an

electron (0.511 MeV) and emitted in opposite directions.

Inelastic collisions: This type of interaction leads to various excitations and ionizations of

atoms along the path of the electron. With any inelastic collision, the electron transfers some

of its energy to the collided particle; this can take the form of exciting inner-shell atomic

electrons to higher energy levels or ionizing atomic nuclei. Ionized electrons traverse the

material and interact via the processes described above, while highly excited atoms deexcite

via the emission of emission of photons and electrons with characteristic energies.

3.3. Response Matrix

Measuring beta spectra using low-temperature detectors yields very high-resolution results,

but there are still systematic uncertainties that can be accounted for. Energy escape is an

unavoidable reality of DES, and fractions of the initial energies of beta particles emitted

inside the absorber will not be thermalized. Microcalorimeter absorbers are designed to be

large enough to ensure that all beta particles are stopped, but the mechanisms of electron

transport (i.e. bremsstrahlung, electron-positron annihilation) within the absorber often

lead to the creation of photons, which are much more likely to escape. Electron attenuation

within any absorber is theoretically 100%, but photons, especially high energy photons, have

a lower attenuation, as shown in Figure 18, and withhold decay energy from being

thermalized.

31

Figure 18. Plot of X-ray mass attenuation coefficients as a function of energy
for Au. Higher energy photons have a much lower attenuation coefficient (3–
4 orders of magnitude) than ones with low energy. Data from Ref. [37].

The overall effect is beta particles with defined initial energies from a radioactive source are

detected with reduced energies. This leads to a systematic skew in a measurement of a beta

spectrum histogram, where lower energy bins are overpopulated, and higher energy bins

are underpopulated. This systematic energy loss can be accounted for by using EGSnrc. The

power behind using this MC software is the ability to accurately simulate the energy

deposition of beta particles within a defined absorber’s geometry, thereby quantifying the

escape probability. The information garnered from the EGSnrc simulations is used to

construct the detector’s response, which would be used to account for the systematic loss in

energy stemming from interactions within the detector itself and thus give a more accurate

measurement of the beta spectrum.

32

3.3.1. Theory Behind Response Matrix

One way to describe the spectrum of a beta source is with a column vector 𝑫𝑁 = (

𝐷1
𝐷2
⋮
𝐷𝑁

),

where N is the number of energy bins over a defined energy range, and 𝐷𝑗 is the counts of

the jth bin of the energy histogram. The vector 𝑫𝑁 is the true beta spectrum, representing the

total decay energy of a given source without any energy escape. Define 𝑴𝑁 as the measured

beta spectrum with the same length as 𝑫𝑁 . Each 𝑀𝑖 is from experimental measurements

with real microcalorimeters. The response matrix for the detector is given by the 𝑁 × 𝑁

matrix 𝑹𝑁 = (
𝑅11 ⋯ 𝑅1𝑁
⋮ ⋱ ⋮
𝑅𝑁1 ⋯ 𝑅𝑁𝑁

), where any value 𝑅𝑖𝑗 is proportional to the probability of the

events in the jth bin of 𝑫𝑁 being measured in the ith energy bin of 𝑴𝑁 , such that

 𝑹𝑁𝑫𝑁 = 𝑴𝑁. (9)

To find the matrix elements of R, monoenergetic electrons are simulated inside an absorber,

and the energy deposition inside the absorber is recorded as a histogram. In doing so, the

true beta spectrum 𝑫𝑁 is known, since all electrons begin with the same energy. 𝑫𝑁 will take

the form of 𝑫𝑁 =

(

0
⋮
𝑛
⋮
0)

 , where n is the number of electrons simulated and the value of j

depends on the initial electron energy. The histogram of the electron energy deposition

inside the absorber is calculated with EGSnrc, and it is proportional to measured beta

spectrum 𝑴𝑁 . The resulting histogram has heights corresponding the percentage of

electrons simulated in a specific bin, rather than total counts, so each height must be

multiplied by n to yield 𝑴𝑁 . With both 𝑫𝑁 and 𝑴𝑁 known, each element of the response

matrix R is defined to be

 𝑅𝑖𝑗 =
𝑀𝑖

𝐷𝑗
. (10)

Once the response matrix 𝑹𝑁 is determined, assuming it is invertible,

33

 𝑹𝑁
−1𝑹𝑁𝑫𝑁 = 𝑫𝑁 = 𝑹𝑁

−1𝑴𝑁, (11)

This means that, with the inverse of the detector response matrix, the true beta spectrum

can be obtained by multiplying the inverse matrix onto the measured spectrum. This will

remove the detector response from a spectrum and account for one of the main systematic

uncertainties involved in this type of measurement at low energies [38].

3.4. Assumptions

The proposed methodology is first based on the following assumptions:

1. The physics within EGSnrc is an accurate representation of particle transport within

an MMC absorber.

2. The time period of energy deposition for any particle’s specific decay path is short

compared to the measurement time.

3. Any measured decay is independent from all other events. This mean that no memory

or pile-up issues are factored into the simulation parameters.

While assumptions 2 and 3 pose real issues for any DES measurement, the largest source of

systematic uncertainty comes from the incomplete absorption of all decay radiation energy,

and is why the Monte Carlo simulation approach lends itself as a viable process to obtaining

the detector’s response.

34

Chapter 4

THE ANATOMY OF A SIMULATED SPECTRUM

To account for the many factors contributing to energy escape from an absorber, EGSnrc is

used to calculate the escape probabilities via the Monte Carlo method. Monoenergetic beta

particles are simulated within an absorber, and the energy deposition within the various

regions of the simulation environment is recorded. Creating 1000s of monoenergetic

simulations across an entire range of energies yields the escape probability of an entire beta

spectrum. This information can be used to unfold energy loss that comes from escape.

4.1. Simulation Parameters

4.1.1. Deconstruction of an Input File

EGSnrc is used to simulate the source, absorber, and transport of particles within an

absorber. The user controls the geometry of the source, its location, and the type of radiation

emitted, as well as the geometry, composition, and location of the absorber. The parameters

for particle transport are largely determined by distributions internal to the software, but

limits can be placed on maximum and minimum particle energies. To replicate real beta

spectroscopy measurements, beta-decay point sources are simulated inside an absorber and

all energy deposited within the geometry of the absorber is recorded. The weights of this

information is its scoring.

EGSnrc input files are broken into a series of input blocks, each of which is responsible for

defining parameters relating to the simulation.

Run Control: This input block determines how many histories to initialize in the simulation,

which is the number of radioactive source particles used. For example, to simulate one

million histories, the following block is used:

:start run control:

 ncase = 1e6

:stop run control:

35

The computational time of the simulation increases as the number of histories is increased

and as the initial energy of each history increases. The full simulation time for 0.25 MeV

electrons simulated in an Au absorber was 5 minutes, but increased to 35 minutes when the

energy was raised to 1.00 MeV.

Geometry Definition: The geometry input block determines the size and shape of any

objects within the simulation. Two types of geometry must be defined: source geometry and

phantom geometry. The source geometry defines the shape of the radioactive source, while

the phantom geometry defines the volume within which energy deposition will be scored.

The following blocks were used to define the phantom (Au absorber) and source geometries:

:start geometry definition:

 # Define phantom geometry (Au absorber)

 :start geometry:

 name = absorber

 library = egs_ndgeometry

 type = EGS_XYZGeometry

 x-slabs = -0.03, 0.06, 1

 y-slabs = -0.03, 0.06, 1

 z-slabs = -0.03, 0.06, 1

 :start media input:

 media = Au

 :stop media input:

 :stop geometry:

 # Define the source geometry (point source)

 :start geometry:

 name = seed

 library = egs_spheres

 midpoint = 0 0 0

 type = EGS_cSpheres

 radii = 0.0001

 :start media input:

 media = AIR_TG43_LD

 set medium = 0 0

 :stop media input:

 :stop geometry:

 phantom geometries = absorber

 source geometries = seed

:stop geometry definition:

36

Media Definition: This input block defines the materials for each volume. Multiple media

can be defined in this input block. Media are defined by calling material data files that contain

default mass densities and density correction information. For example, many different

media are all defined in the material.dat file, as shown in the following input block:

:start media definition:

 material data file = /egs_home/egs_brachy/lib/media/material.dat

:stop media definition:

Once the media have been defined in an input file, individual geometry regions are assigned

a medium within the geometry definition input blocks. For example, within the definition of

the phantom geometry, the geometry was defined to be gold:

:start geometry:

 name = absorber

 library = egs_ndgeometry

 type = EGS_XYZGeometry

 x-slabs = -0.03, 0.06, 1

 y-slabs = -0.03, 0.06, 1

 z-slabs = -0.03, 0.06, 1

 :start media input:

 media = Au

 :stop media input:

:stop geometry:

Source Definition: The source definition input block determines the characteristics of the

radioactive source in the simulation. The user can create five types of sources: collimated,

Fano, isotropic, parallel beam, and point. A collimated source only irradiates in a certain

defined area or solid angle. Fano sources deliver particles proportional to the mass in the

source region. An isotropic source emits particles uniformly distributed in a 4𝜋 angle (and a

point source is a special subset of isotropic sources that emit from a single point in space).

Parallel beam sources emit particles uniformly in a single direction. Electron, positron, and

photon sources can be created with different energy distributions using a spectrum input

block nested within the source definition input block. For example, to define a 1 MeV

monoenergetic electron point source:

:start source:

 library = egs_point_source

37

 name = PointSource

 charge = -1

 position = 0 0 0

 :start spectrum:

 type = monoenergetic

 energy = 1

 :stop spectrum:

:stop source:

Transport Parameters: Global parameters for the simulation, including maximum and

minimum energy cutoffs for photons and electrons are defined in this block. The parameters

used are shown in the following input block:

:start MC transport parameter:

 Global ECUT = 0.512

 Global PCUT = 0.001

 Source ECUT = 0.512

 Source PCUT = 0.001

 Fluorescent Photon Cutoff = 0.001

 Brems Cross Sections = NRC

 Rayleigh Scattering = On

 Electron Impact Ionization = On

:stop MC transport parameter:

Scoring Options: The user must define the mass attenuation coefficients as a function of

energy (muen) for each material used in the simulation, which is done by calling a library of

attenuation data for many different materials. This block is also used to score energy

deposition in different regions of the simulation. This information is returned in the form of

a histogram. For example, scoring energy deposition in a gold volume:

:start scoring options:

 # The path to a file containing mass-energy absorption data for

 the relevant media in the simulation

 muen file = egs_home/egs_brachy/lib/muen/

 brachy_gold_1.5MeV.muendat

 muen for media = Au

#Energy deposition histogram

pulse height regions = 1 #Index of geometry region to score in

pulse height bins = 100 #Number of energy bins

:stop scoring options:

38

Additional options for scoring different types of spectra can be chosen by the user, including

the absolute counts of particles escaping the external surface of the source, an energy

weighted spectrum of particles on the surface of the source, and photon fluence in a

geometry region (See Appendix B).

Ausgab Objects: Ausgab definitions provide more options for additional outputs from a

simulation. Different ausgab objects pulled from the EGS_AusgabObject library provide

different information for scoring. Two very useful ausgab objects are EGS_TrackScoring [39]

and EGS_DoseScoring [40], which record the directional paths taken by every particle over

the course of the simulation and record energy deposition in each geometry, respectively.

EGS_TrackScoring ouputs particle track information to a separate file that is used to visualize

both the geometries and the particles’ transport through the material, as seen in Figure 19.

To define these two ausgab objects:

:start ausgab object definition:

Particle tracks

:start ausgab object:

name = tracks

library = egs_track_scoring

:stop ausgab object:

Dose scoring

:start ausgab object:

library = egs_dose_scoring

name = my_dose_scoring

region dose = yes

volume = 0.000216

dose regions = 1

:stop ausgab object:

:stop ausgab object definition:

The exact input files of the simulations used to create the response matrix can be found in

Appendix A. In each simulation, a million monoenergetic beta particles (electrons) are

emitted isotropically from a point source in the center of a 0.6 × 0.6 × 0.6 cm3 Au box, which

represents the absorber of a microcalorimeter and is like actual absorber dimensions and

composition used for real 𝛽-spectrum measurements [41,38]. This was simulated in the

center of a 30 × 30 × 30 cm3 box of air. Energy deposition from all particle interactions was

scored in all regions across the simulation environment i.e., within the point source,

absorber, and surrounding air box. The total energy deposited in each region is returned in

39

the simulation output file. The EGSnrc codes egs_track_scoring and egs_dose_scoring were

used to create the particle tracks and record energy deposition, respectively. The particle

tracks are shown in Figure 19.

Figure 19. Particle tracks from an ENSnrc simulation of monoenergetic
electrons travelling through an Au microcalorimeter absorber. The cube is
the Au absorber, with dimensions of 0.6 × 0.6 × 0.6 cm3 . Within the
absorber, the particle tracks of photons and electrons have been displayed.
Black lines are photons, while red are electrons.

4.1.2. Monoenergetic Simulations

The response matrix is constructed with a series of monoenergetic simulations. In each

simulation, monoenergetic electrons are simulated within the absorber, and the total energy

deposited by each of the simulated decays is recorded, resulting in a histogram

corresponding to a measured energy spectrum corresponding to the decays with a single

energy (see Figure 20).

40

Figure 20. Histogram of energy escape of electrons from an Au absorber. The
histogram of the initial energies of electrons in the simulation is shown in
green; all the particles are within the bin 𝑗∆𝐸, where j is the energy and ∆𝐸 is
the bin width. The histogram of energies output from the simulation is shown
in blue. Energy escape means that not all the energy of each electron was
deposited in the absorber, resulting in a spectrum shift. Figure modified from
Ref. 38.

4.2. Response Matrix

To construct the response matrix, monoenergetic simulations will be run across the energy

range of 10 keV to 2 MeV, incrementally increasing by 10 keV. Finer incrementing between

monoenergetic simulations creates a more continuous response matrix. Once created, the

inverse response matrix will be numerically solved in Python. Having the inverse response

matrix then allows for the detector response to be deconvolved from a measured DES

spectrum, resulting in a new histogram that is closer to the true beta spectrum.

41

Chapter 5

BEGINNINGS OF A RESPONSE MATRIX

5.1. Construction of Response Matrix

When using DES to measure the total energy of a decay from an embedded radioactive

source, some of the total decay energy is lost due to incomplete thermalization, largely from

decay products escaping the absorber. This results in a DES spectrum with measured

energies lower than the decay energy. The escape probability is not constant as a function of

initial energy and depends on a variety of factors, including absorber material and source

energy, type, location, and distribution. By working with EGSnrc to simulate varying

monoenergetic beta sources within a microcalorimeter, this detector response can be

quantified in the form of a matrix 𝑅. The value 𝑅𝑖𝑗 of a particular element of the response

matrix is proportional to the probability that a decay will deposit that much energy in the

absorber.

The tutor7pp code from EGSnrc is used to create a histogram of the energy deposition, which

is written to a text file (.egslog). The initial energy of the electrons corresponds to the 𝑗 index,

the x-axis binning from the histogram corresponds to the 𝑖 index, and the height of each bin

corresponds to the value 𝑎𝑖𝑗 of the response matrix.

To explore the escape probabilities as a function of source energy, monoenergetic electron

sources of 0.25 MeV, 0.50 MeV, 0.75 MeV, and 1.00 MeV were simulated using the tutor7pp

program. For each, the number of bins in the histogram was adjusted so that the width of

each bin would be the same across all four input energies. Figure 21 shows the resulting

energy histograms created from these simulations.

5.1.1. Simulation Analysis

To simply the process of data analysis of the simulations, a python script (see Appendix C)

was written to read the .egslog files for each simulation and save the energy deposition

histogram.

42

Figure 21. Four energy deposition histograms created from simulating
various monoenergetic electron sources inside a 0.6 × 0.6 × 0.6 mm3 Au
absorber. Blue is a 0.25 MeV source, orange is 0.50 MeV, green is 0.75 MeV,
and red is 1.00 MeV. All histograms have the same binning width of 12.5 keV
and have similar escape peaks.

Finer binning within an energy deposition histogram reveals structure within the energy

escape probability. For example, the peak at 935 keV corresponds to electrons with 1 MeV

of energy that have deposited only 935 keV. This occurs about 2% of the time, and it

corresponds to gold fluorescent X-rays escaping. Gold K𝛼1 and 𝐾𝛼2 X-rays are 66.8037 keV

and 66.9895 keV, respectively [42].

This process can be used to create a finely binned response matrix, by simulating the entire

energy range of 10 keV to 2 MeV with 10 keV steps. This can be done by running a batch

mode in EGSnrc.

43

5.1.2. Inverse of the Response Matrix

As was discussed in Chapter 2, the actual quantity of interest is not 𝑅, but 𝑅−1, or the inverse

of the response matrix. We can show that this is actually the desired matrix by showing:

𝑅−1𝑅 = 𝐼

It is this inverse matrix that can be used to deconvolve detector response from a measured

beta spectrum. When the matrix operates on measured DES histogram, the detector

response is accounted for, and the result is the true beta spectrum. The overall effect is a

slight shift in the DES histogram away from lower energy bins that were overpopulated due

to energy loss (see Figure 22).

Figure 22. Comparison of 36Cl beta spectra with the simulated measured
histogram (left) and the deconvolved histogram (right). Taken from
Ref.38.

44

Chapter 6

DISCUSSION

6.1. Conclusions and Future Plans

A method for determining the response matrix for DES absorber was proposed and initial

results were presented for simulations of monoenergetic electrons for four energies (0.25,

0.50, 0.75, and 1.00 MeV) within a 0.6 × 0.6 × 0.6 mm3 Au absorber. Provided sufficiently

fine binning and a large number of histories, a response matrix can be created to unfold the

detector response from beta spectroscopy measurements, offering superior measurements

and lower uncertainties.

Then, the response matrix could be applied to real DES beta spectra to see how the

theoretical calculations compare to experimental measurements.

This tool can be used to study the effect of absorber materials and geometries on escape

probabilities. Future studies should include uncertainty calculations of this approach and

benchmarking the results with experimental data from a monoenergetic electron source.

45

Appendix A

The following is the source code for the tutor7pp software used to run the simulations.

/*

##

EGSnrc egs++ tutor7pp application

Copyright (C) 2015 National Research Council Canada

This file is part of EGSnrc.

EGSnrc is free software: you can redistribute it and/or modify it under

the terms of the GNU Affero General Public License as published by the

Free Software Foundation, either version 3 of the License, or (at your

option) any later version.

EGSnrc is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for

more details.

You should have received a copy of the GNU Affero General Public License

along with EGSnrc. If not, see <http://www.gnu.org/licenses/>.

##

Author: Iwan Kawrakow, 2005

Contributors: Frederic Tessier

##

A relatively simple EGSnrc application using the C++ interface. It

implements the functionality of the original tutor7 tutorial code written

in mortran except that now, due to the use of the general geometry and

source packages included in egspp, any geometry or any source can be used

in the simulation.

In addition, tutor7pp derives from the EGS_AdvancedApplication class and

therefore automatically inherits the ability to do restarted and parallel

simulations, to combine the results of parallel runs or to re-analyze the

results of single/parallel runs. It also inherits the ability to run for

a

user specified maximum amount of cpu time or to terminate the simulation

when a user specified uncertainty has been reached.

TERMINOLOGY

46

Simulations are split into 'chunks'. For simple simulations (no parallel

runs, etc.) there is a single simulation chunk with the number of

histories specified in the input file. For parallel runs the number of

chunks and number of histories per chunk are determined by a 'run control

object' (see below).

Each simulation chunk is split into 'batches'. The batches are not required

for statistical analysis (by using the provided scoring classes it is easy

to have a history-by-history uncertainty estimation). Instead, simulation

chunks are split into batches so that the progress of the simulation can

be

reported after the completion of a batch and the current results can be

stored into a data file. By default there are 10 batches per simulation

chunk

but this can be changed in the input file.

The simulation is controlled via a 'run control object' (RCO) The purpose

of the run control object is to give to the shower loop the number of

histories per simulation chunk, number of batches per chunk and to possibly

terminate the simulation prematurely if certain conditions are met (e.g.

maximum cpu time allowed is exceeded or the required uncertainty has been

reached).

egs++ provides 2 run control objects:

1) simple: the simple RCO always uses a single simulation chunk.

2) JCF: a JCF object is used by default for parallel runs

JCF stands for Job Control File as this type of object

uses a file placed in the user code directory to record

the number of histories remaining, the number of jobs

running, etc., in parallel runs. This is explained in

more details in PIRS-877. A JCF object uses by default

10 simulation chunks but this can be changed in the

input file.

It is possible to use a simple control object for parallel runs by giving

the -s or --simple command line option. In this case, each parallel job

will run the number of histories specified in the input file but

automatically adjust the initial random number seed(s) with the job index.

This additional possibility has been implemented because several users

have

reported problems with file locking needed for a JCF run control object.

It is also possible to have other RCO's compiled into shared libraries and

automatically loaded at run time (e.g., one could implement a RCO that

communicates via TCP/IP with a remote server to obtain the number of

histories in the next simulation chunk).

USAGE

- Geometry and particle source are specified in an input file as explained

in PIRS-899 and PIRS-898.

- Run control is specified in a section of the input file delimited by

47

:start run control: and :stop run control: labels.

- A simple RCO is used for single job runs.

- A JCF RCO is used by default for parallel runs, unless -s or --simple

is specified on the command line.

- A simple RCO understands the following keys:

ncase = number of histories to run

nbatch = number of batches to use

statistical accuracy sought = required uncertainty, in %

max cpu hours allowed = max. processor time allowed

calculation = first | restart | combine | analyze

All inputs except for ncase are optional (a missing ncase key will result

in a simulation with 0 particles).

- A JCF object understands all the above keys plus

nchunk = number of simulation chunks

- The simulation is run using

tutor7pp -i input_file -p pegs_file [-o output_file] [-s] [-P n -j i]

where command line arguments between [] are optional. The -P n option

specifies the number of parallel jobs n and -j i the index of this job.

On Linux/Unix systems it is more convenient to use the 'exb' script for

parallel job submission (see PIRS-877)

##

*/

#include "egs_advanced_application.h"

#include "egs_scoring.h"

#include "egs_interface2.h"

#include "egs_functions.h"

#include "egs_input.h"

#include "egs_base_source.h"

#include "egs_rndm.h"

#include <cstdlib>

using namespace std;

class APP_EXPORT Tutor7_Application : public EGS_AdvancedApplication {

 EGS_ScoringArray *score; // scoring array with energies deposited

 EGS_ScoringArray *eflu; // scoring array for electron fluence at back

of geometry

 EGS_ScoringArray *gflu; // scoring array for photon fluence at back

of geometry

 EGS_ScoringArray **pheight; // pulse height distributions.

 int nreg; // number of regions in the geometry

 int nph; // number of pulse height objects.

 double Etot; // total energy that has entered the geometry

 int rr_flag; // used for RR and radiative splitting

 EGS_Float current_weight; // the weight of the initial particle

that

 // is currently being simulated

 bool deflect_brems;

 EGS_Float *ph_de; // bin widths if the pulse height distributions.

48

 int *ph_regions; // region indices of the ph-distributions

 static string revision; // the CVS revision number

public:

 Tutor7_Application(int argc, char **argv) :

 EGS_AdvancedApplication(argc,argv), score(0), eflu(0), gflu(0),

pheight(0),

 nreg(0), nph(0), Etot(0), rr_flag(0), current_weight(1),

deflect_brems(false) { };

 ~Tutor7_Application() {

 if (score) {

 delete score;

 }

 if (eflu) {

 delete eflu;

 }

 if (gflu) {

 delete gflu;

 }

 if (nph > 0) {

 for (int j=0; j<nph; j++) {

 delete pheight[j];

 }

 delete [] pheight;

 delete [] ph_regions;

 delete [] ph_de;

 }

 };

 void describeUserCode() const;

 int initScoring();

 int ausgab(int iarg);

 int outputData();

 int readData();

 void resetCounter();

 int addState(istream &data);

 void outputResults();

 void getCurrentResult(double &sum, double &sum2, double &norm,

 double &count);

protected:

 int startNewShower();

};

string Tutor7_Application::revision = " ";

extern "C" void F77_OBJ_(egs_scale_xcc,EGS_SCALE_XCC)(const int *,const

EGS_Float *);

extern "C" void F77_OBJ_(egs_scale_bc,EGS_SCALE_BC)(const int *,const

EGS_Float *);

void Tutor7_Application::describeUserCode() const {

 egsInformation(

 "\n ***"

 "\n * *"

 "\n * tutor7pp *"

 "\n * *"

 "\n ***"

 "\n\n");

 egsInformation("This is Tutor7_Application %s based on\n"

 " EGS_AdvancedApplication %s\n\n",

 egsSimplifyCVSKey(revision).c_str(),

 egsSimplifyCVSKey(base_revision).c_str());

49

}

int Tutor7_Application::initScoring() {

 // Get the number of regions in the geometry.

 nreg = geometry->regions();

 score = new EGS_ScoringArray(nreg+2);

 //i.e. we always score energy fractions

 eflu = new EGS_ScoringArray(200);

 gflu = new EGS_ScoringArray(200);

 // Initialize with no russian roulette

 the_egsvr->i_do_rr = 1;

 EGS_Input *options = input->takeInputItem("scoring options");

 if (options) {

 EGS_Input *scale;

 while ((scale = options->takeInputItem("scale xcc"))) {

 vector<string> tmp;

 int err = scale->getInput("scale xcc",tmp);

 //egsInformation("Found 'scale xcc', err=%d

tmp.size()=%d\n",err,tmp.size());

 if (!err && tmp.size() == 2) {

 int imed = EGS_BaseGeometry::getMediumIndex(tmp[0]) + 1;

 if (imed > 0) {

 EGS_Float fac = atof(tmp[1].c_str());

 egsInformation("\n ***** Scaling xcc of medium %d with

%g\n",imed,fac);

 F77_OBJ_(egs_scale_xcc,EGS_SCALE_XCC)(&imed,&fac);

 }

 }

 delete scale;

 }

 while ((scale = options->takeInputItem("scale bc"))) {

 vector<string> tmp;

 int err = scale->getInput("scale bc",tmp);

 //egsInformation("Found 'scale xcc', err=%d

tmp.size()=%d\n",err,tmp.size());

 if (!err && tmp.size() == 2) {

 int imed = EGS_BaseGeometry::getMediumIndex(tmp[0]) + 1;

 if (imed > 0) {

 EGS_Float fac = atof(tmp[1].c_str());

 egsInformation("\n ***** Scaling bc of medium %d with

%g\n",imed,fac);

 F77_OBJ_(egs_scale_bc,EGS_SCALE_BC)(&imed,&fac);

 }

 }

 delete scale;

 }

 vector<string> choices;

 choices.push_back("no");

 choices.push_back("yes");

 deflect_brems = options->getInput("deflect electron after

brems",choices,0);

 if (deflect_brems) {

 egsInformation("\n *** Using electron deflection in brems

events\n\n");

 setAusgabCall(AfterBrems,true);

 }

 int n_rr;

 if (!options->getInput("Russian Roulette",n_rr) && n_rr > 1) {

50

 the_egsvr->i_do_rr = n_rr;

 setAusgabCall(BeforeBrems,true);

 setAusgabCall(AfterBrems,true);

 setAusgabCall(BeforeAnnihFlight,true);

 setAusgabCall(AfterAnnihFlight,true);

 setAusgabCall(BeforeAnnihRest,true);

 setAusgabCall(AfterAnnihRest,true);

 //setAusgabCall(FluorescentEvent,true);

 egsInformation("\nUsing Russian Roulette with survival

probability 1/%d\n",n_rr);

 }

 // The user has provided scoring options input.

 // See where she/he wants to score a pulse height distribution

 // and how many bins to use for each pulse height distribution

 vector<int> regions;

 int err = options->getInput("pulse height regions",regions);

 vector<int> nbins;

 int err1 = options->getInput("pulse height bins",nbins);

 if (!err && !err1) {

 if (regions.size() != nbins.size() && nbins.size() != 1)

 egsWarning("initScoring(): you must input the same "

 "number of 'regions' and 'bins' inputs or a single

'bins'"

 " input\n");

 else {

 EGS_ScoringArray **tmp = new EGS_ScoringArray* [nreg+2];

 for (int i=0; i<nreg+2; i++) {

 tmp[i] = 0;

 }

 for (int j=0; j<regions.size(); j++) {

 int nb = nbins.size() == 1 ? nbins[0] : nbins[j];

 if (nb < 1) {

 egsWarning("zero bins for region %d?\n",regions[j]);

 }

 if (regions[j] < -1 || regions[j] > nreg) {

 egsWarning("invalid region index %d\n",regions[j]);

 }

 if (nb > 0 && regions[j] >= 0 && regions[j] < nreg+2) {

 int ij = regions[j];

 if (tmp[ij]) egsInformation("There is already a "

 "PHD object in

region %d => ignoring it\n",ij);

 else {

 tmp[ij] = new EGS_ScoringArray(nb);

 ++nph;

 }

 }

 }

 if (nph > 0) {

 pheight = new EGS_ScoringArray* [nph];

 ph_regions = new int [nph];

 ph_de = new EGS_Float [nph];

 EGS_Float Emax = source->getEmax();

 int iph = 0;

 for (int j=0; j<nreg+2; j++) {

 if (tmp[j]) {

 pheight[iph] = tmp[j];

51

 ph_regions[iph] = j;

 int nbin = pheight[iph]->bins();

 ph_de[iph++] = Emax/nbin;

 }

 }

 }

 delete [] tmp;

 }

 }

 else egsWarning("initScoring(): you must provide both, 'regions'"

 " and 'bins' input\n");

 delete options;

 }

 return 0;

}

int Tutor7_Application::ausgab(int iarg) {

 if (iarg <= 4) {

 int np = the_stack->np - 1;

 // Note: ir is the region number+1

 int ir = the_stack->ir[np]-1;

 // If the particle is outside the geometry and headed in the positive

 // z-direction, change the region to count it as "transmitted"

 // Note: This is only valid for certain source/geometry conditions!

 // If those conditions are not met, the reflected and transmitted

 // energy fractions will be wrong

 if (ir == 0 && the_stack->w[np] > 0) {

 ir = nreg+1;

 }

 EGS_Float aux = the_epcont->edep*the_stack->wt[np];

 if (aux > 0) {

 score->score(ir,aux);

 }

 // if(the_stack->iq[np]) score->score(ir,the_epcont-

>edep*the_stack->wt[np]);

 if (ir == nreg+1) {

 EGS_ScoringArray *flu = the_stack->iq[np] ? eflu : gflu;

 EGS_Float r2 = the_stack->x[np]*the_stack->x[np] + the_stack-

>y[np]*the_stack->y[np];

 int bin = (int)(sqrt(r2)*10.);

 if (bin < 200) {

 aux = the_stack->wt[np]/the_stack->w[np];

 if (aux > 0) {

 flu->score(bin,aux);

 }

 }

 }

 return 0;

 }

 int np = the_stack->np-1;

 if (iarg == BeforeBrems || iarg == BeforeAnnihRest || (iarg ==

BeforeAnnihFlight &&

 the_stack->latch[np] > 0)) {

 the_stack->latch[np] = 0;

 rr_flag = 1;

 the_egsvr->nbr_split = the_egsvr->i_do_rr;

 return 0;

 }

52

 if (iarg == AfterBrems && deflect_brems) {

 EGS_Vector u(the_stack->u[np-1],the_stack->v[np-1],the_stack->w[np-

1]);

 EGS_Float tau = the_stack->E[np-1]/the_useful->rm - 1;

 EGS_Float beta = sqrt(tau*(tau+2))/(tau+1);

 EGS_Float eta = 2*rndm->getUniform()-1;

 EGS_Float cost = (beta + eta)/(1 + beta*eta);

 EGS_Float sint = 1 - cost*cost;

 if (sint > 0) {

 sint = sqrt(sint);

 EGS_Float cphi, sphi;

 rndm->getAzimuth(cphi,sphi);

 u.rotate(cost,sint,cphi,sphi);

 the_stack->u[np-1] = u.x;

 the_stack->v[np-1] = u.y;

 the_stack->w[np-1] = u.z;

 }

 }

 if (iarg == AfterBrems || iarg == AfterAnnihRest || iarg ==

AfterAnnihFlight) {

 the_egsvr->nbr_split = 1;

 if (iarg == AfterBrems && rr_flag) {

 the_stack->latch[the_stack->npold-1] = 1;

 }

 rr_flag = 0;

 return 0;

 }

 /*

 if(iarg == FluorescentEvent && the_stack->latch[np] > 0) {

 the_stack->latch[np] = 0; the_stack->wt[np] /= the_egsvr->i_do_rr;

 if(np+1+the_egsvr->i_do_rr > MXSTACK)

 egsFatal("Stack size exceeded while splitting dluorescent

photon!\n");

 for(int j=1; j<the_egsvr->i_do_rr; j++) {

 EGS_Float cost = 2*rndm->getUniform()-1;

 EGS_Float sint = 1 - cost*cost; sint = sint > 0 ? sqrt(sint) : 0;

 EGS_Float cphi, sphi; rndm->getAzimuth(cphi,sphi);

 the_stack->E[np+j] = the_stack->E[np];

 the_stack->wt[np+j] = the_stack->wt[np];

 the_stack->iq[np+j] = the_stack->iq[np];

 the_stack->ir[np+j] = the_stack->ir[np];

 the_stack->dnear[np+j] = the_stack->dnear[np];

 the_stack->latch[np+j] = the_stack->latch[np];

 the_stack->x[np+j] = the_stack->x[np];

 the_stack->y[np+j] = the_stack->y[np];

 the_stack->z[np+j] = the_stack->z[np];

 the_stack->u[np+j] = sint*cphi;

 the_stack->v[np+j] = sint*sphi;

 the_stack->w[np+j] = cost;

 }

 }

 */

 return 0;

}

int Tutor7_Application::outputData() {

 // We first call the outputData() function of our base class.

 // This takes care of saving data related to the source, the random

53

 // number generator, CPU time used, number of histories, etc.

 int err = EGS_AdvancedApplication::outputData();

 if (err) {

 return err;

 }

 // We then write our own data to the data stream. data_out is

 // a pointer to a data stream that has been opened for writing

 // in the base class.

 (*data_out) << " " << Etot << endl;

 if (!score->storeState(*data_out)) {

 return 101;

 }

 for (int j=0; j<nph; j++) {

 if (!pheight[j]->storeState(*data_out)) {

 return 102+j;

 }

 }

 if (!eflu->storeState(*data_out)) {

 return 301;

 }

 if (!gflu->storeState(*data_out)) {

 return 302;

 }

 return 0;

}

int Tutor7_Application::readData() {

 // We first call the readData() function of our base class.

 // This takes care of reading data related to the source, the random

 // number generator, CPU time used, number of histories, etc.

 // (everything that was stored by the base class outputData() method).

 int err = EGS_AdvancedApplication::readData();

 if (err) {

 return err;

 }

 // We then read our own data from the data stream.

 // data_in is a pointer to an input stream that has been opened

 // by the base class.

 (*data_in) >> Etot;

 if (!score->setState(*data_in)) {

 return 101;

 }

 for (int j=0; j<nph; j++) {

 if (!pheight[j]->setState(*data_in)) {

 return 102+j;

 }

 }

 if (!eflu->setState(*data_in)) {

 return 301;

 }

 if (!gflu->setState(*data_in)) {

 return 302;

 }

 return 0;

}

void Tutor7_Application::resetCounter() {

 // Reset everything in the base class

 EGS_AdvancedApplication::resetCounter();

54

 // Reset our own data to zero.

 score->reset();

 Etot = 0;

 for (int j=0; j<nph; j++) {

 pheight[j]->reset();

 }

 eflu->reset();

 gflu->reset();

}

int Tutor7_Application::addState(istream &data) {

 // Call first the base class addState() function to read and add

 // all data related to source, RNG, CPU time, etc.

 int err = EGS_AdvancedApplication::addState(data);

 if (err) {

 return err;

 }

 // Then read our own data to temporary variables and add to

 // our results.

 double etot_tmp;

 data >> etot_tmp;

 Etot += etot_tmp;

 EGS_ScoringArray tmp(nreg+2);

 if (!tmp.setState(data)) {

 return 101;

 }

 (*score) += tmp;

 for (int j=0; j<nph; j++) {

 EGS_ScoringArray tmpj(pheight[j]->bins());

 if (!tmpj.setState(data)) {

 return 102 + j;

 }

 (*pheight[j]) += tmpj;

 }

 EGS_ScoringArray tmp1(200);

 if (!tmp1.setState(data)) {

 return 301;

 }

 (*eflu) += tmp1;

 if (!tmp1.setState(data)) {

 return 302;

 }

 (*gflu) += tmp1;

 return 0;

}

void Tutor7_Application::outputResults() {

 egsInformation("\n\n last case = %d Etot = %g\n",

 (int)current_case,Etot);

 double norm = ((double)current_case)/Etot;

egsInformation("\n\n==\n

");

 egsInformation(" Energy fractions\n");

egsInformation("==\n");

 egsInformation("The first and last items in the following list of energy

fractions are the reflected and transmitted energy, respectively. These two

values are only meaningful if the source is directed in the positive z-

55

direction. The remaining values are the deposited energy fractions in the

regions of the geometry, but notice that the identifying index is the region

number offset by 1 (ir+1).");

 score->reportResults(norm,

 "ir+1 | Reflected, deposited, or transmitted energy

fraction",false,

 " %d %12.6e +/- %12.6e %c\n");

 if (nph > 0) {

 if (nph > 1) {

egsInformation("\n\n==\n

");

 egsInformation(" Pulse height distributions\n"

"==\n\n");

 }

 else {

 egsInformation("\n\n Pulse height distribution in region %d\n"

"==\n\n",

 ph_regions[0]);

 }

 for (int j=0; j<nph; j++) {

 if (nph > 1) egsInformation("\nRegion %d\n"

 "----------------

\n\n",ph_regions[j]);

 double f,df;

 for (int i=0; i<pheight[j]->bins(); i++) {

 pheight[j]->currentResult(i,f,df);

 egsInformation("%g %g %g\n",ph_de[j]*(0.5+i),

 f/ph_de[j],df/ph_de[j]);

 }

 }

 }

 /*

 EGS_Float Rmax = 20; EGS_Float dr = Rmax/200;

 egsInformation("\n\n Electron/Photon fluence at back of geometry as a

function of radial distance\n"

"===

=\n");

 for(int j=0; j<200; ++j) {

 double fe,dfe,fg,dfg;

 eflu->currentResult(j,fe,dfe); gflu->currentResult(j,fg,dfg);

 EGS_Float r1 = dr*j, r2 = r1 + dr;

 EGS_Float A = M_PI*(r2*r2 - r1*r1);

 EGS_Float r = j > 0 ? 0.5*(r1 + r2) : 0;

 egsInformation("%9.3f %15.6e %15.6e %15.6e

%15.6e\n",r,fe/A,dfe/A,fg/A,dfg/A);

 }

 */

}

void Tutor7_Application::getCurrentResult(double &sum, double &sum2,

 double &norm, double &count) {

 count = current_case;

 norm = Etot > 0 ? count/Etot : 0;

 score->currentScore(0,sum,sum2);

56

}

int Tutor7_Application::startNewShower() {

 Etot += p.E*p.wt;

 int res = EGS_Application::startNewShower();

 if (res) {

 return res;

 }

 if (current_case != last_case) {

 if (nph > 0) {

 for (int j=0; j<nph; j++) {

 pheight[j]->setHistory(current_case);

 int ireg = ph_regions[j];

 // In ausgab the scoring array is offset by 1 to include

 // the reflected and transmitted as the first and last regions

 EGS_Float edep = score->currentScore(ireg+1);

 if (edep > 0) {

 int ibin = min((int)(edep/(current_weight*ph_de[j])),

pheight[j]->bins()-1);

 if (ibin >= 0 && ibin < pheight[j]->bins()) {

 pheight[j]->score(ibin,1);

 }

 }

 }

 }

 score->setHistory(current_case);

 eflu->setHistory(current_case);

 gflu->setHistory(current_case);

 last_case = current_case;

 }

 current_weight = p.wt;

 return 0;

}

#ifdef BUILD_APP_LIB

APP_LIB(Tutor7_Application);

#else

APP_MAIN(Tutor7_Application);

#endif

Appendix B

The following is the input file used for 1 MeV monoenergetic electron simulations in EGSnrc.

##

MMC Simulation with monoenergetic point source. Designed for use with

tutor7pp

##

57

#---

:start run control:

 ncase = 1e6

geometry error limit = 100

:stop run control:

#---

:start run mode:

 # egs_brachy has 3 run modes:

 # 'normal', 'superposition', and 'volume correction only'

 run mode = normal

:stop run mode:

#---

This input block allows 'pegsless' runs

:start media definition:

 AE = 0.512

 UE = 2.012

 AP = 0.001

 UP = 1.500

 material data file =

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/media/material.dat

 #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before lib

:stop media definition:

#---

A gold MMC

:start geometry definition:

 # An air box that will hold the entire geometry

 :start geometry:

 name = box

 library = egs_glib #this is a brachy_dose addition to egs++

#which allows files to be included into the

#input file. Very useful for defining

#commonly used geometries.

 include file =

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/phantoms/50cmx50c

mx50cm_box_xyz_air.geom

 #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before

lib

 :stop geometry:

The volume in which we want to dose score (the gold MMC)

 :start geometry:

name = phantom

 library = egs_glib

 include file =

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/phantoms/0.06cmx0

.06cmx0.06cm_0.03mm_goldMMC_1region.geom

 :stop geometry:

58

The source geometry

 :start geometry:

 name = seed

 library = egs_glib

 include file =

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/sources/point_sou

rce/sphere/sphere.geom

 #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before

lib

 :stop geometry:

 # Inscribe the seed in the scoring phantom

 :start geometry:

 name = phantom_with_seed

 library = egs_genvelope

 base geometry = phantom

 inscribed geometries = seed

 :stop geometry:

 # Inscribe the phantom+seed in the large air box

 :start geometry:

 name = final

 library = egs_genvelope

 base geometry = box

 inscribed geometries = phantom_with_seed

 :stop geometry:

 # Source, phantom, and simulation geometries all need to be explicitly

 # specified to egs_brachy

 source geometries = seed

 phantom geometries = phantom

 simulation geometry = final

:stop geometry definition:

#---

:start volume correction:

 # Scoring voxels which contain source geometries need to have their

 # volumes corrected to accurately score dose

 :start source volume correction:

 correction type = correct

 density of random points (cm^-3) = 1E8

 # This include file statement defines a shape that encompasses the

 # entire source geometry.

 # Volume correction will only occur within the boundaries of this

shape.

 include file =

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/sources/point_sou

rce/sphere/boundary.shape

59

 #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before

lib

 :stop source volume correction:

:stop volume correction:

#---

:start source definition:

 # Typical egs++ source input block

 :start source:

 library = egs_isotropic_source

 name = PointSource

 charge = -1

 include file =

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/sources/point_sou

rce/sphere/sphere.shape

 #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before

lib

 :start spectrum:

 type = monoenergetic

 energy = 0.1

 :stop spectrum:

 :stop source:

 # The position of the source

 :start transformations:

 include file =

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/geometry/transformations/s

ingle_seed_at_origin

 #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before

lib

 :stop transformations:

 # The source needs to be explicitly specified to egs_brachy.

 # This should be the same as the 'name' defined in source input block

above.

 simulation source = PointSource

:stop source definition:

#---

:start scoring options:

 # Many scoring options are available in egs_brachy.

 # Please see the documentation for a full list.

score tracklength dose = yes

score energy deposition = yes

 # The path to a file containing mass-energy absorption data for the

 # relevant media in the simulation

60

 muen file =

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/muen/brachy_gold_1.5MeV.mu

endat

 #to run in batch, insert local value of $EGS_HOME/egs_brachy/ before lib

 # Specify which media dose is scored in

 muen for media = Au

#pulse height distribution (hopefully)

pulse height regions = 1

pulse height bins = 100

:start spectrum scoring:

type = surface count

particle type = photon

minimum energy = 0.000

maximum energy = 0.5

number of bins = 50

output format = xmgr

:stop spectrum scoring:

:stop scoring options:

#---

Transport parameters

include file =

C:/EGSnrc_with_egs_brachy/egs_home/egs_brachy/lib/transport/low_energy_defau

lt

#to run in batch, insert local value of $EGS_HOME/egs_brachy/ before lib

################################

AUSGAB OBJECTS

################################

:start ausgab object definition: # Only 1 ausgab definition block allowed

Particle tracks

:start ausgab object:

name = tracks

library = egs_track_scoring

:stop ausgab object:

Dose scoring

:start ausgab object:

library = egs_dose_scoring

name = my_dose_scoring

region dose = yes

volume = 0.000216

dose regions = 1

:stop ausgab object:

:stop ausgab object definition:

Analysis of different spectrum scoring options available:

61

62

63

Appendix C

The following python script was used to read through output files from each of the four

simulations and pull the histogram values out for constructing the coarsely binned response

matrix.

Importing the required modules

import numpy as np

import matplotlib.pyplot as plt

import linecache

Generating data for the heat map

response_matrix = np.zeros((4 , 80))

#Reading in energy deposition from 0.25MeV Monoenergetic Source

with open("C:/Users/aeb11/OneDrive/Documents/ProjectLab

(Koehler)/Dumb_Man's_Response_Matrix_0.25MeV.egslog", 'r') as file:

 fileText = file.readlines()

for i in range (408, 428, 1):

 bin_data = linecache.getline("C:/Users/aeb11/OneDrive/Documents/Project

Lab(Koehler)/Dumb_Man's_Response_Matrix_0.25MeV.egslog", i)

 #print(bin_data)

 energy = bin_data.split(' ') [0]

 N = bin_data.split(' ') [1]

 =
 +

2
 =

2.563 1+7.466 1

2
0.3 0.1

 = 1.00

64

 response_matrix[0][i-408] = N

 #print(energy)

 #print(N)

 #print(empty)

#Reading in energy deposition from 0.50MeV Monoenergetic Source

with open("C:/Users/aeb11/OneDrive/Documents/Project Lab

(Koehler)/Dumb_Man's_Response_Matrix_0.50MeV.egslog", 'r') as file:

 fileText = file.readlines()

for i in range (408, 448, 1):

 bin_data = linecache.getline("C:/Users/aeb11/OneDrive/Documents/Project

Lab (Koehler)/Dumb_Man's_Response_Matrix_0.50MeV.egslog", i)

 #print(bin_data)

 energy = bin_data.split(' ') [0]

 N = bin_data.split(' ') [1]

 response_matrix[1][i-408] = N

#Reading in energy deposition from 0.75MeV Monoenergetic Source

with open("C:/Users/aeb11/OneDrive/Documents/Project Lab

(Koehler)/Dumb_Man's_Response_Matrix_0.75MeV.egslog", 'r') as file:

 fileText = file.readlines()

for i in range (408, 468, 1):

 bin_data = linecache.getline("C:/Users/aeb11/OneDrive/Documents/Project

Lab (Koehler)/Dumb_Man's_Response_Matrix_0.75MeV.egslog", i)

 #print(bin_data)

 energy = bin_data.split(' ') [0]

 N = bin_data.split(' ') [1]

 response_matrix[2][i-408] = N

#Reading in energy deposition from 1.00MeV Monoenergetic Source

with open("C:/Users/aeb11/OneDrive/Documents/Project Lab

(Koehler)/Dumb_Man's_Response_Matrix_1.00MeV.egslog", 'r') as file:

 fileText = file.readlines()

for i in range (408, 468, 1):

 bin_data = linecache.getline("C:/Users/aeb11/OneDrive/Documents/Project

Lab (Koehler)/Dumb_Man's_Response_Matrix_1.00MeV.egslog", i)

 #print(bin_data)

 energy = bin_data.split(' ') [0]

 N = bin_data.split(' ') [1]

 response_matrix[3][i-408] = N

print(response_matrix)

65

References

1 M.P. Croce, et al., “Development of Holmium-163 Electron-Capture Spectroscopy with Transition-Edge
Sensors,” J. Low. Temp. Phys. 184, 958-968 (2016).

2 H. Becquerel, “Sur les radiations émises par phosphorescence,” Séanc. Acad. Sci. Paris, 122, 420-421

(1896).

3 E. Rutherford, "Uranium Radiation and the Electrical Conduction Produced by It," Philos. Mag. 47, 109-

163 (1899).

4 H. Becquerel, in Nobel Lectures, Physics 1901-1921 (Elsevier Publishing Company, Amsterdam, 1967).

5 J. Chadwick, “Intensitatsverteilung im magnetischen Spektren der /3-Strahlen von Radium B + C,”
Verhandl. Dtsc. Phys. Ges. 16, 383-391 (1914).

6 C. D. Ellis, W. A. Wooster, “The Average Energy of Disintegration of Radium E,” Proc. Roy. Soc. A,
177(776), 109-123 (1927).

7 L. M. Brown, “The Idea of the Neutrino,” Phys. Tod., 31(9), 23-28, (1978).

8 E. Fermi, “Tentativo de una Teoria dei Raggi 𝛽,” (1934).

9 F. L Wilson, “Fermi’s Theory of Beta Decay,” Am. J. Phys., 36(12), 1150-1160 (1968).

10 C. L. Cowan, Jr., F. Reines, “Detection of the Free Neutrino,” Phys. Rev., 92(3), 830-831, (1953).

11 K. Koehler, “Microcalorimeters: A Bright, Bold Future,” (2021).

12 P. C-O. Ranitzsch, et al., “MetroMMC: Electron-Capture Spectrometry with Cryogenic Calorimeters for
Science and Technology,” J. Low. Temp. Phys., 199, 441-450, (2020).

13 M. Loidl, J. Beyer, L. Bockhorn, C. Enss, D. Györi, S. Kempf, K. Kossert, R. Mariam, O. Nähle, M. Paulsen,
M. Rodrigues, M. Schmidt, “MetroBeta: Beta Spectrometry with Metallic Magnetic Calorimeters in the
Framework of the EuropeanProgram of Ionizing Radiation Metrology,” J. Low. Temp. Phys., 193, 1251-
1256, (2018).

14 M. Loidl, J. Beyer, L. Bockhorn, C. Enss, D. Györi, S. Kempf, K. Kossert, R. Mariam, O. Nähle, M. Paulsen,
M. Rodrigues, M. Schmidt, “Beta spectrometry with metallic magnetic calorimeters in the framework of
the European EMPIR project MetroBeta,” Appl. Radiat. Isot., 153, (2019).

15 E. Steinbauer, P. Bauer, M. Geretschläger, G. Bortels, J.P. Biersack, P. Burger, “Energy resolution of
silicon detectors: approaching the physical limit,” Nucl. Instrum. Methods Phys. Res., 85, 642-649, (1994).

16 K. E. Koehler, D. A. Bennett, E. M. Bond, M. P. Croce, D. E. Dry, R. D. Horansky, et. al, “Q Spectroscopy
with Superconducting Sensor Microcalorimeters,” IEEE. Trans. Nucl. Sci., 60(2), 624-629, (2014).

17 J. N. Ullom, D. A. Bennett, “Review of Superconducting Transition-Edge Sensors for X-ray and Gamma-
ray Spectroscopy,” Supercond. Sci. Technol. 28 (2015).

18 A. Fleischmann, T. Daniyarov, H. Rotzinger, M. Linck, and C. Enss, “Magnetic Calorimeters for High
Resolution X-ray Spectroscopy," Rev. Sci. Instrum. 74, 3947-3954 (2003).

19 M. K. Bacrania et al., "Large-Area Microcalorimeter Detectors for Ultra-High-Resolution X-Ray and
Gamma-Ray Spectroscopy," IEEE. Trans. Nucl. Sci. 56(4), 2299-2302 (2009).

20 E. Cosulich, G. Gallinaro, F. Gatti, S. Vitale, “Detection of 187Re beta decay with a cryogenic
microcalorimeter. Preliminary results,” Phys. Lett. B, 295, 143-147, (1992).

21 L. Gastaldo, K. Blaum, K. Chrysalidis, et al., “The electron capture in 163Ho experiment—ECHo,” Eur.
Phys. J. Spec. Top., 226, 1623-1694, (2017).

22 D. A. Bennett et al., “A high resolution gamma-ray spectrometer based on superconducting
microcalorimeters,” Rev. Sci. Instrum. 83, (2012).

23 S. Friedrich, G. B. Kim, D. Lee, J. Ad Hall, R. Cantor, A. Voyles, R. Hummatov, S. P. T. Boyd, “Ultra-high
Resolution Magnetic Microcalorimeter Gamma-Ray Detectors for Non-Destructive Assay of Uranium and
Plutonium,” presented at the IAEA Workshop on Nondestructive Assay of Uranium and Plutonium,
Vienna, Austria (2021).

24 D. McCamon, in Cryogenic Particle Detection, Ed. by C. Enss (Springer-Verlag, Berlin, 2005), p. 1-34.

https://ieeexplore.ieee.org/author/38546852000
https://ieeexplore.ieee.org/author/37580427100
https://ieeexplore.ieee.org/author/38014027200
https://ieeexplore.ieee.org/author/37991330800
https://ieeexplore.ieee.org/author/37832442700
https://ieeexplore.ieee.org/author/37296207800
https://aip.scitation.org/author/Fleischmann%2C+A
https://aip.scitation.org/author/Daniyarov%2C+T
https://aip.scitation.org/author/Rotzinger%2C+H
https://aip.scitation.org/author/Linck%2C+M
https://aip.scitation.org/author/Enss%2C+C

66

25 S. Schlör, Sketch of helium dilution refrigerator [vector graphic], Wikipedia, February 14 2019
(https://en.wikipedia.org/wiki/Dilution_refrigerator).

26 F. Pobell, Matter and Methods at Low Temperatures (Springer Berlin, Heidelberg, 2007).

27 D. H. Andrews et al. “Attenuated Superconductors I. for Measuring Infra-Red Radiation,” Rev. Sci.
Instrum. 13, 281 (1941).

28 K. D. Irwin and G. C. Hilton, in Cryogenic Particle Detection, Ed. by C. Enss (Springer-Verlag, Berlin,
2005), p. 63-149.

29 A. Fleischmann, C. Enss, and G.M. Seidel, in Cryogenic Particle Detection, Ed. by C. Enss (Springer-
Verag, Berline, 2005), p. 151-216.

30 W. Seidel, Ph. D. Thesis, Technische Universitat Munchen, 1986.

31 R. L. Harrison, “Introduction to Monte Carlo Simulation,” AIP. Conf. Proc.,1204, 17-21, (2010).

32 I. Kawrakow, D.W.O Rogers, E. Mainegra-Hing, F. Tessier, R.W. Townson, B.R.B Walters. “EGSnrc
toolkit for Monte Carlo simulation of ionizing radiation transport”, doi: 10.4224/40001303 [release
v2021] (2000).

33 M. J. Berger, “Monte Carlo Calculation of the penetration and diffusion of fast charged particles,”
Methods Comput. Phys., 1, 135 – 215 (1963).

34 I. Kawrakow, D.W.O Rogers, E. Mainegra-Hing, F. Tessier, B.R.B Walters, “The EGSnrc Code
System: Monte Carlo Simulation of Electron and Photon Transport,” NRC Canada, (2018).

35 B. A. Faddegon, I. Kawrakow, Y. Kubyshin, J. Perl, J. Sempau, L. Urban, “The accuracy of EGSnrc, Geant4
and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam
radiotherapy,” Phys. Med. Biol., 54(20), 6151-6163, (2009).

36 G. Nelson and D. Reilly, in Passive Nondestructive Assay of Nuclear Materials, Ed. by D. Reily, N. Ensslin,
H. Smith, Jr., and S. Kreiner, (U.S. Government Printing Office, Washington, DC, 1991).

37 J. H. Hubbell and S. M. Seltzer (1996). “X-Ray Mass Attenuation Coefficients,” NIST, V.1.4, Dataset,
https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z79.html.

38 M. Paulsen, K. Kossert, J. Beyer, “An Unfolding Algorithm for High Resolution Microcalorimetric Beta
Spectrometry,” Nucl. Instrum. Methods Phys. Res., 953, (2020).

39 Iwan Kawrakow, computer code egs_track_scoring.cpp (National Research Council, Canada, 2015),
https://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__TrackScoring.html

40 Ernesto Mainegra-Hing, computer code egs_dose_scoring.cpp (National Research Council, Canada,
2015), https://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__DoseScoring.html

41 H. Rotzinger, et al., “Beta Spectroscopy with Magnetic Calorimeters,” J Low Temp Phys, 151, 1087-
1093, (2008).

42 J. A. Bearden, “X-Ray Wavelengths,” Rev. Mod. Phys., 39(1), 78-124, (1967).

https://en.wikipedia.org/wiki/Dilution_refrigerator
https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z79.html
https://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__TrackScoring.html
https://nrc-cnrc.github.io/EGSnrc/doc/pirs898/classEGS__DoseScoring.html

