

The ¹²C(n,2n)¹¹C Cross Section from 20-27 MeV

Mark Yuly, Thomas Eckert, Garrett Hartshaw, Ian Love, Keith Mann, Tyler Reynolds and Laurel Vincett. Houghton College.

Stephen Padalino, Megan Russ, Mollie Bienstock, Angela Simone, Drew Ellison, and Holly Desmitt. SUNY Geneseo.

Carl Brune, Thomas Massey. Ohio University, Ohio University.

Ryan Fitzgerald, Mollie Bienstock, National Institute of Standards and Technology.

Craig Sangster, Sean Regan. Laboratory for Laser Energetics.

Saskatchewan

Alberta

British Columbia

nno

Locations Ontario

Manitoba

Satellite

Maine

eneseo

W)

Brunswick

Bermu

Quebec

Turks and

The ¹²C(n,2n)¹¹C Cross Section from 20-27 MeV

What does this have to do with ICF?

How does the experiment work?

How do you extract the ¹²C(n,2n)¹¹C cross section?

What about geometry?

What does this have to do with ICF?

 $D + T \rightarrow \alpha + n (14.1 \text{ MeV})$

 $n + D \text{ (or T)} \rightarrow n' + D' \text{(or T')}$

 $D' + T (or D + T') \rightarrow \alpha + n'' (12 - 30 \text{ MeV})$

Calculated neutron spectrum

R. Town, LLE Review, 69, pp. 46 (1996)

Tertiary neutrons (n'')

$$\frac{N_n''}{N_n} = \frac{\text{Tertiary}}{\text{Primary}} \sim (\rho R)^2$$

Hydrodynamic stability – angular variation of tertiary neutrons

R. Town, LLE Review, **69**, pp. 46 (1996) D.R. Welch, H. Kislev, and G.H. Miley, Rev. Sci. Intrum. **59**, 4 pp. 612 (1988).

Carbon activation

¹¹C decay

Counting station at LLE

¹²C(n,2n)¹¹C Cross section

Weaknesses of previous measurements:

1. Neutron Source

- a) Fixed energy cyclotron
 - 1) DT, change energy using energy degraders or by changing angle
 - 2) ⁷Li(p,n), not monoenergetic
- b) Only non-cyclotron measurement was done at Ohio University

2. Neutron flux

- a) calculated from DT cross sections
- b) measured using TOF to plastic or liquid scintillators
- c) recoil spectrometer
- d) Li target activation
- e) No particle ID, No measurement at target

3. Activation

- a) Geiger counter (no energy)
- b) Single Germanium detector
- c) One experiment used coincidence in NaI
- d) Efficiencies!

How does the experiment work?

Advantages:

1. Neutron Source

- a) Monoenergetic
 - a) Tandem van de Graff, DT
 - b) Energy spread < 0.5 MeV

2. Neutron flux

- a) Proton recoil telescope
- b) Proton ID
- c) Flux measured on target

3. Activation

- a) Coincidence
- b) Energy
- c) Careful efficiency measurement

Ohio University 4.5-MV Tandem

Houghton students setting up targets and detectors at Ohio University.

Proton Telescope

Proton telescope built at Houghton College, calibrated at SUNY Geneseo

Time and effort

- 23 days of beam time, summers 2012, 2013 24 hour beam/ 8 hour shifts
- Setup/testing
- For each energy setting (5 hours)
 - 1. Tune beam, tests
 - 2. Activation: 90 minutes, count protons
 - 3. Transport: 5 minutes
 - 4. Counting: 180 minutes
 - 5. Background: 30 minutes, count protons
 - 6. Analysis: proton count, decay curve fitting

How do you extract the ¹²C(n,2n)¹¹C cross section?

Proton Identification (N_p)

$$\sigma_{n2n} = \frac{N_{11_C} \lambda}{T_C (1 - e^{-\lambda t})} \left(\frac{N_p}{N_n}\right) \frac{1}{N_p}$$

$$N_p = \frac{N_{\rm p,fg}}{f_{\rm live,fg}} - \frac{N_{\rm p,bg}}{f_{\rm live,bg}}$$

Measuring *N*¹¹*C*

Energy (keV)

Geneseo students setting up counting station at Ohio University

$$\sigma_{n2n} = \frac{N_{11} \lambda}{T_C (1 - e^{-\lambda t})} \left(\frac{N_p}{N_n}\right) \frac{1}{N_p}$$

Coincidence Spectra of activated Carbon Sample

Measuring *N*¹¹*C*

$$\sigma_{n2n} = \frac{N_{11} \lambda}{T_C (1 - e^{-\lambda t})} \left(\frac{N_p}{N_n}\right) \frac{1}{N_p}$$

What about geometry?

$$\sigma_{n2n} = \frac{N_{^{11}C} \lambda}{T_C (1 - e^{-\lambda t})} \left(\frac{N_p}{N_n}\right) \frac{1}{N_p}$$

- 1. Calculate from geometry and known cross sections.
- 2. First approximation: assume isotropic monoenergtic neutrons and point sources.

Ratio N_p/N_n

$$\sigma_{n2n} = \frac{N_{11_C} \lambda}{T_C (1 - e^{-\lambda t})} \left(\frac{N_p}{N_n}\right) \frac{1}{N_p}$$

Correction 1 – Extended target/cross section distribution

Correction 2 – Collimation

Corrections

$$N_n(CH_2) = \int_0^{2\pi} \int_0^{R_{CH_2}} \int_0^{2\pi} \int_0^{R_t} \sigma_{dt}(\phi_1, E_d) F_d T_t r_1 dr_1 d\theta_1 \frac{\cos \phi_1}{R_1^2} r_2 dr_2 d\theta_2$$

$$N_{p} = \int_{0}^{2\pi} \int_{0}^{R_{d}} \int_{0}^{2\pi} \int_{0}^{R_{cH_{2}}} \int_{0}^{2\pi} \int_{0}^{R_{t}} \begin{cases} 0, & r(z_{f}) \ge R_{i} \text{ or } r(z_{b}) \ge R_{i} \\ \sigma_{dt}(\phi_{1}) \sigma_{np}(\psi, E_{n}(\phi_{1}))F_{d}T_{t} \frac{T_{H}}{\cos\phi_{1}} \end{cases} r_{1}dr_{1}d\theta_{1} \frac{\cos\phi_{1}}{R_{1}^{2}}r_{2}dr_{2}d\theta_{2} \frac{\cos\phi_{2}}{R_{2}^{2}}r_{3}dr_{3}d\theta_{3}$$

Why aren't you finished yet?

In order to measure the number of ¹¹C nuclei created by ¹²C(n, 2n)¹¹C, we need to know the <u>absolute full-peak</u> <u>coincidence efficiency</u> of our detectors.

Absolute Efficiency

Absolute Efficiency

NaI γ detector

Absolute Full-Peak Efficiency

$$\varepsilon = \frac{N_{coincidence}}{N_{\beta}}$$

Problem: 1275 keV gamma rays

Solution: detect 1275 keV gamma rays

- Select events in coincidence with 1275 keV full-peak
- No Compton from VETO into NaI

Experiment Setup Houghton College

"VETO" detector 3 x 3 Nal (well)

detector

Nal detector 3 x 3 Nal

Extended Source + Si Detector Case

Coincidence Efficiency ²²Na Source and thin Si detector

Experiment Setup Houghton College

0

Nal 1 singles at center

Coincidence at center

Coincidence at 2 cm

Plastic Scintillator Detector

What's Next?

- Nal detector efficiency measurements
 - Coincidence technique, Houghton College
 - Calibrated sources, Ryan Fitzgerald (NIST)
 Graphite
 - Graphite
- GEANT efficiency simulation, Ryan Fitzgerald (NIST)
- ¹²C(n,2n)¹¹C cross sections

Summary

- 1. This measurement is critical to use carbon activation as a diagnostic at NIF.
- This is a difficult experiment 5% uncertainty including systematic effects.
- 3. This is a well-designed experiment that addresses weaknesses of previous work .
- 4. This effort represents contributions from a number of collaborators with a breadth of expertise.

Collaborating Institutions

Bibliography

D.R. Welch, H. Kislev, and G.H. Miley, Rev. Sci. Intrum. **59**, 4 pp. 612 (1988).
R. Town, LLE Review, **69**, pp. 46 (1996)
J.E. Brolley Jr. et al., Phys. Rev. **88**, pp. (1952)
O.D. Brill et al., Dok. Akad. Nauk SSSR, **6**, pp. (1961)
P.J. Dimbylow, Phys. Med. Biol. **25**, pp. (1980)
B. Anders et al., Zeit. Phys. A. **301**, pp. (1981)
T.S. Soewarsono et al., JAERI Tokai Rep. **92**, 27, pp. (1992)
Y. Uno et al., Nucl. Sci. Eng. **122**. 27, pp. (1996)

Previous Experiments

Year	Experiment	Accelerator	Neutron source	Target	Neutron Flux measuremen	Activation measurement	
1952	Brolley,	10.5 MeV deuterons	³ H(d,n) gas cell,	polyethylene	Calculated using ³ H(d,n)	Calibrated end-window Geiger	
	Fowler,	from cyclotron	neutron energy	(CH ₂) foils, 11	cross section	counters to detect ¹¹ C decay	
	Schlacks		selected by angle	mg/cm2		positrons	
1961	Brill et al.	20 MeV deuterons	3 H(d,n) and 2 H(d,n),	Teflon, CF ₂	Energy/angle distribution	Counted β + annihilation	
		from cyclotron,	T+Zr solid and gas		measured using neutron	gammas in Geiger counter,	
		slowed down by Pt	² H target		TOF. Claims measured +/-	compared to 197Au.	
		foils (0.7 MeV			30%		
		resolution)					
1980	Dimbylow	Nuclear model calcul	lel calculation, statistical level density model based on optical model fits to experimental total, elastic and				
		inelastic cross section	ns.	1	11		
1981	Anders,	7-16 MeV deuterons	³ H(d,n) Titanium	cylindrical (22	Recoil proton detector	Annihilation gamma-gamma	
	Herges,	from cyclotron,	foil, 10 um thick,	mm diam),	(stilbene crystal at 0	coincidence using 2 NaI detectors	
	Scobel	degraded to 5.7-9.2	adsorbed tritium	reactor	deg). Neutron monitor to		
		MeV by Be foil		graphite	correct for fluctuations in		
					flux.		
1981	Welch et al.	Ohio University	³ H(d,n)	Natural	No information available.	Ge(Li) Detector calibrated with	
		Tandem		sample, 1.77		NaCl sample.	
				cm-diameter			
				by 1.0 cm			
				thick			
1992	Soewarsono	20-40 MeV protons	⁷ Li(p,n)	Natural	Neutron TOF to NE-213	Single HPGe detector, Activate with	
	et al.	from cyclotron.	quasimonoenergetic	sample	liquid scintillator	Li target and no Li target and	
			; lithium on graphite		detector, see Uno et al.	subtract	
			backing, background				
			subtracted.				
1996	Uno et al.	20-40 MeV protons	⁷ Li(p,n) quasi-	Cylindrical (20	Activation of Li target	Two HPGe detectors detected	
		from cyclotron.	monoenergetic,	mm diam),	gave absolute	decay gammas, no coincidence	
			width varies 2.3-1.4	graphite	normalization, neutron	required.	
			MeV for 18-40 MeV		time of flight measured		
			neutrons,		angular and energy		
			respectively.		distribution.		