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Abstract 

Brownian motion is named after Scottish botanist Robert Brown, who observed the motion of 

particles in a fluid in the 1820s. In the first years of the 20th century, Einstein developed a random-walk 

theory about the thermal energy induced motion of a liquid’s particles causing a relatively small 

number of particles suspended in the liquid to be moved in the process of diffusion, and it was soon 

accepted that this motion was what Brown had observed.  Based on the then-current view of the cell 

as a membrane containing particles in a fluid, it was expected that molecules within a living cell would 

move according to Einstein’s theory.  However, recent experiments have revealed that the diffusion of 

molecules within living cells occurs slower than Brownian motion would predict.  This is not 

surprising, given the modern understanding of the cell as a diverse environment filled with many 

particles and structures.  Scientists are currently conducting experiments to see if other mathematical 

models can describe the motion of such particles accurately.   

Thesis Supervisor:  Dr. Mark Yuly 
Title:  Professor of Physics 
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Chapter 1 
 

INTRODUCTION 

 
 

1.1 Brownian Motion 

Brownian motion is the irregular motion of particles suspended in a liquid.  It is named after Scottish 

botanist Robert Brown, who was one of the first to observe the phenomenon.  However, it was not 

until many decades after Brown’s observations that scientists realized the cause of Brownian motion: 

“the random thermal motion of the liquid’s molecules” [1].  Traditionally, Brownian motion has been 

viewed as the mechanism for diffusion in living prokaryotic cells.   

1.1.1 Robert Brown’s Observations 

In 1827, Robert Brown was using a microscope to examine the pollen of plants in an effort to study 

the process of fertilization.  While doing so, he noticed particles contained within the grains of pollen.  

When placed in water, Brown observed that the particles were in motion, and he noted that “[t]hese 

motions were such as to satisfy me, after frequent repeated observation, that they arose neither from 

currents in the field, nor from its gradual evaporation, but belonged to the particle itself” [2].  He 

observed these particles, along with much smaller objects, which he termed “molecules,” in many 

different types of plants, both living and dead. 

Brown went on to examine “various animal and vegetable tissues, whether living or dead” [2] and he 

always found “molecules.”  He again found them when he examined minerals (inorganic materials), 

noting “in every mineral which I could reduce to a powder, sufficiently fine to be temporarily 

suspended in water, I found these molecules more or less copiously…” [2].  In fact, he eventually 

observed “molecules” in any material he could suspend in water.  As to the cause of this motion, 

Brown was uncertain. 
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1.1.2 Development of Theory 

In 1905, Albert Einstein published a paper [3] that showed that, according to the molecular-kinetic 

theory of heat, particles suspended in a liquid should exhibit motions that can be described with a 

random walk model, provided the ratio of suspended particles to liquid molecules was small.  This is 

the mechanism by which standard diffusion, the motion of particles from an area of higher 

concentration to an area of lower concentration, takes place.  By the following year, Einstein had been 

informed that other scientists had concluded that his theory was, in fact, talking about Brownian 

motion [1], a possibility that Einstein himself had considered [3]. 

1.1.3 Early Experiments 

In 1908, Jean Perrin was trying to determine Avogadro’s number [4].  To do so, he examined the 

Brownian motion of small grains of putty in an aqueous solution by looking at the trajectories of single 

particles.  This method, known as single-particle tracking, is advantageous because the different 

particles may not be identical, causing them to behave differently.  Since the trajectories of the 

individual particles were too short to provide meaningful statistics by themselves, Perrin used 

ensemble averages of those trajectories.  This provided him with the meaningful statistics he needed, 

but at the cost of making the results less accurate, because, again, the trajectories were from non-

identical particles [5]. 

In 1914, Ivar Nordlund [6] was recording the Brownian motion of a single drop of mercury that was 

moving through an aqueous solution by projecting it on a moving film.  He was able to obtain 

meaningful statistics from a single trajectory by performing a time average, thus avoiding the need to 

average the trajectories of non-identical drops, as Perrin had done [5]. 

1.1.4 Connection to Living Cells 

The traditional view of a prokaryotic cell (e.g. a bacterium) was that it essentially consists of particles 

suspended in a liquid.  Because of that view, scientists assumed that the conditions were dilute enough 

for diffusion to occur within the cell with Brownian motion as the mechanism.  Since diffusion is a 
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result of thermodynamics [3], this would allow the cell to have molecules (e.g. nutrients) transported to 

areas of lower concentration without expending additional energy in the process [7].     

1.2 Examining Single Molecules with Spectroscopy and Statistics 

Often, when studying a molecule, scientists will treat it as a system within an ensemble of identical 

systems.  This approach yields the averaged values for properties of the entire ensemble (i.e. an 

ensemble-averaged property).  However, in a living cell the molecules are not identical, prompting an 

alternative approach: examining the molecules individually.  This is what Perrin and Nordlund set out 

to do in their experiments.  It is possible to use single-molecule spectroscopy to obtain the information 

necessary to perform single-particle tracking.  In recent years, these processes have revealed that 

Brownian motion does not correctly describe the motion of molecules inside a living cell. 

1.2.1 Single-Molecule Spectroscopy and Single-Particle Tracking 

In single-molecule spectroscopy, a molecule is bombarded with photons.  This causes the molecule to 

transition to an excited state, which it then leaves by emitting more photons.  These emitted photons 

will have different energies, as they are emitted by molecules in a heterogeneous system, as the 

resonance frequency of the molecule is affected by the surrounding environment.  Single-particle 

tracking can then be used to analyze the photons.  Researchers examine aspects such as their location, 

time dependence, polarization, and spectral content.  This reveals details about the region surrounding 

the molecule [8]. 

1.2.2 Subdiffusion 

These single-molecule techniques have revealed that the diffusion inside living cells cannot be easily 

explained with standard Brownian motion as the mechanism [7].  A bacterial cell, for example, is more 

complex than scientists originally thought, containing a cytoskeleton and many particles of various 

sizes.  A eukaryotic cell (e.g. a human stomach cell) is more complex still.  This weakens the 

approximation that a bacterial cell is merely a dilute liquid containing suspended particles.  In fact, it is 

found that diffusion occurs slower than Brownian motion would predict.  Thus, this process is known 

as subdiffusion. 
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1.3 Significance in Living Cells 

It might be assumed that subdiffusion would be detrimental to a living cell, considering that it would 

result in chemical reactions happening less rapidly.  However, there are potential benefits to a slower 

diffusion process.  For example, fractional Brownian motion [9], a mathematical model of 

subdiffusion, describes a three-dimensional random walk with a fractal dimension [10].  In contrast to 

the region explored by the traditional random walker [3], this model allows the walker (physically, a 

reactant in a living cell) to explore a larger region.  This process does take more time, but it increases 

the chance that the reactant will find its target and the reaction will take place [10].  As for cellular 

processes that require speed, it has been speculated that subdiffusion can be overcome with the use of 

motor proteins to move molecules [11]. 

1.4 Thesis Objective 

This thesis will describe the theoretical basis behind Brownian motion and its connection to ergodic 

theory.  In addition, it will give brief descriptions of the Continuous-Time Random Walk model 

(CTRW) and of the Fractional Brownian Motion (FBM) model, mathematical models that could 

describe subdiffusion.  It will also examine recent experiments done to test the validity of Brownian 

motion as a model of diffusion in living cells.  These experiments have revealed that Brownian motion 

cannot be used as a model of diffusion in living cells. 
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Chapter 2 
 

THEORY 

 
 

2.1 Brownian Motion 

The first section of this chapter will focus on Brownian motion as described by Albert Einstein.  It will 

also connect Brownian motion to basic ergodic theory. 

2.1.1 Einstein’s Theory 

In his 1905 work “On the Movement of Small Particles Suspended in a Stationary Liquid Required by 

the Molecular-Kinetic Theory of Heat” [3], Albert Einstein began by using two conceptions of thermal 

energy to examine particles of a non-electrolyte in a liquid.  According to traditional thermodynamics, 

if   moles (Einstein used the term “gram-molecule,” which is so similar to the modern concept of a 

mole that one can use either concept in explaining this theory [12], [13]) of a substance are dissolved in 

a liquid of volume    that is a part of a larger volume   of the same liquid, such that    is separated 

from the rest of   by a wall that is permeable to the solvent, but not to the solute, then that wall will 

experience an osmotic pressure   from the dissolved particles according to Equation 1: 

                                                  (1) 

where   is the liquid’s temperature,   is the universal gas constant, and   is the van’t Hoff factor, 

which is one for non-electrolytes [14], [15] (in his paper, Einstein omitted the van’t Hoff factor from 

this equation, but since he was considering non-electrolytes, the result is the same).  On the other 

hand, if small particles are suspended in the partial volume    and cannot pass through the wall then 

those suspended particles will not exert an osmotic pressure on the wall. 
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However, using the molecular-kinetic theory of heat, the only real difference between a dissolved 

particle and a suspended particle is its size.  Thus, if   suspended particles are in that partial volume 

   , they will exert an osmotic pressure   on the wall according to Equation 2: 

  
  

   

 

  
  

(2) 

where    is the number of actual molecules in a gram-molecule or mole.  Einstein then used 

thermodynamics to show that the molecular-kinetic theory of heat gives this result, provided that the 

liquid containing the suspended particles remains dilute. 

Einstein then moved on to discuss the theory of diffusion of suspended particles.  He used the 

concept of thermodynamic equilibrium to show that the coefficient of diffusion  , a proportionality 

factor [11] with units of length squared per time [5], of a dissolved substance consisting of spherical 

particles of radius   is given by Equation 3: 

  
  

  

 

    
  

                         (3) 

where   is the liquid’s coefficient of friction.  This is significant because it showed that “apart from 

universal constants and the absolute temperature, the coefficient of diffusion of the suspended 

substance depends only on the coefficient of friction of the liquid and the size of the suspended 

particles” [3]. 

Finally, Einstein came to a description of what he would eventually realize to be Brownian motion 

itself.  He noted that each suspended particle’s motion is independent of the motion of all the other 

particles.  He also noted that a particle’s motion during one small time interval is independent of its 

motion during a second small time interval, provided that the time intervals are not too small [3]. 

Einstein basically treated each suspended particle as a one-dimensional random walker.  His approach 

is essentially as follows [16].  The random walker starts at a position    .  From there, it can move 



 11 

along the  -axis in either direction in   total steps, each of length  .  Let    and    represent the 

number of steps to the right and left, respectively, such that 

                               (4) 

Let   represent the net number of steps to the right, such that  

                               (5) 

Thus, after   steps, the walker will be a distance 

                            (6) 

from its starting point.  From Equations (4) and (5), we see that  

   
 

 
       

                      (7) 

Now, since the steps are independent of each other, if we let   represent the probability of the walker 

making a step to the right and   the probability of the walker making a step to the left, then the 

probability of the walker moving in a sequence of    steps to the right and    steps to the left is  

                                 (8) 

There are  

(
 
  

)  
  

          
 

                       (9) 

ways for the walker to move    steps to the right and    steps to the left.  Thus, the probability of the 

walker being    steps to the right is given by  

      (
 
  

)           
                (10) 
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The probability of a step to the right is 
 

 
, and the probability of a step to the left is also 

 

 
.  Thus, the 

probability of a random walker being a distance      from a point of origin is given by 

             
 

  

  

(
   

 )  (
   

 )  
  

                          (11) 

If the walker is in motion for a total time   and the average time between steps is  , then we have 

  
 

 
  

                     (12) 

Then, using Sterling’s approximation 

   √                      (13) 

we obtain from Equation (11) 

     
√        

    √(
   

 ) (
   

 )
(
   

 
)

  (
   

 
)√(

   
 )(

   
 )

(
   

 
)

  (
   

 
)

  
 (14) 

Define 

                         (15) 

to get, after some simplification 
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Now, using a Maclaurin Series, we can expand this about 
 

 
  .  Upon simplifying, we obtain 

      
 

 
           

  

  
 

 

 
    

  

   
  

                    (17) 

Let’s consider the behavior when 
 

 
  , which allows the final term in this approximation to be 

neglected 

      
 

 
           

  

  
 

 

 
     

                    (18) 

Solving for      now gives 

           
 

√   
  

  

    
                    (19) 

Since the diffusion coefficient (or coefficient of diffusion) is defined  

  
  

  
 

   

  
  

                        (20) 

we see that  

                                 (21) 

Since      and  

                                       (22) 

it follows that  
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√    
 

   

     
                          (23) 

This is the Brownian probability function, the probability of finding a particle undergoing Brownian 

motion at position   and time  . 

2.1.2 Connection to Basic Ergodic Theory 

The ergodic hypothesis can be explained as follows [5].  A large amount    of identical particles are 

distributed randomly into various boxes.  The probability      of    particles being in box   is 

given by  

     
  

  
  

                           (24) 

An individual particle hopping randomly among the boxes will be inside box   for a time   .  For an 

overall experimental time  , that particle has a probability   ̅ of being in box  , such that 

     ̅  
  

 
  

                           (25) 

Now, the ergodic hypothesis states that if the number of particles and the averaging time are large 

enough,      (the ensemble mean) and   ̅ (the time average) will be the same.  Symbolically, we 

have  

   
    

        
   

   ̅                            (26) 

Brownian motion is ergodic, as can be shown as follows.  For a particle whose probability function is 

given by       , the ensemble mean         is defined as [17] 

        ∫           
 

  

  
                          (27) 
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Note that   is only a parameter in this equation. 

The probability function for a particle undergoing Brownian motion is given by Equation 23.  Using 

that expression for        and integrating, we obtain [5] 

                                       (28) 

For a particle with a trajectory     , the time average         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is defined as [17] 

        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
 

    
∫                 

    

 

  
                          (29) 

Where    is the overall measurement time and   is the lag time, a “time window swept along the time 

series” [17].  Averaging         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  over many trajectories yields “a unique, smooth result also at finite 

measurement times” [5]: 

                     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
 

  
∑   

       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

   

 
 

    
∫                   

    

 

  
 (30)                          

We are able to write the average                  over the square particle position as the 

number of steps performed during the time interval         times the length of an individual step 

squared.  On average, the former is given by 
 

 
, where   is again the average time between steps. 

For a Brownian particle, we can used the definition of the diffusion coefficient (Equation 20) to find 

the time average 

        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                 (31) 

This is the same result we would have obtained had we used   instead of   in Equation 28.  Therefore, 

for long measurements of the Brownian motion of a particle, the number of steps self-averages, 

meaning Brownian motion is ergodic.    
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2.2 New Theories 

Single-molecule spectroscopy and single-particle tracking have revealed that, inside living cells, the 

ensemble mean of a molecule’s position is given by [5] 

                                        (32) 

This is in contrast to the ensemble mean of the position of a particle undergoing Brownian motion, 

which is proportional to  , as shown in Equation 28.  This means that, inside a living cell, the motion 

of molecules has a weaker time dependence (this is why this process is known as subdiffusion [10]).  

Since Brownian motion does not correctly describe the motion of these molecules, scientists have 

been examining other mathematical models to explain diffusion in living cells.  Two of these models 

are the Continuous-Time Random Walk model (CTRW) and the Fractional Brownian Motion (FBM) 

model. 

2.2.1 Continuous-Time Random Walk Model 

The CTRW model was introduced by Elliott Montroll and George Weiss in their 1965 paper [18].  

Their model differs from the conventional random walk model [3] in that their random walker remains 

immobile for a random waiting time    after each step, and     , the random distribution of waiting 

times, is given by [10] 

       
                                 (33) 

Of note, the average waiting time      of the CTRW walker diverges:           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   never 

converges to        .  Thus, the CTRW model is not ergodic. 

2.2.2 Fractional Brownian Motion Model 

In their 1968 paper, Benoît Mandelbrot and John van Ness introduced the Fractional Brownian 

motion model [9].  In the FBM model,        (the ensemble mean in three dimensions) has a 

component      that is described by “a stochastic differential equation with random noise”[10]: 
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                         (31) 

where      is the random noise.  In this model, the dynamics are stationary, meaning the noise 

correlation function              depends on nothing but the time difference |     |.  This 

results in the time average and ensemble mean eventually correlating.  Thus, the FBM model is 

ergodic. 
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Chapter 3 
 

EXPERIMENTS 

 

3.1 mRNA Molecules in E. coli 

In 2006, Ido Golding and Edward C. Cox of Princeton University published a paper [7] detailing their 

observation of mRNA molecules in living E. coli cells.  They made an mRNA detection system that 

consisted of a green fluorescent protein (GFP) fused to the bacteriophage MS2 coat protein, and a 

reporter RNA that contained 96 tandemly repeated sites where the MS2 coat protein can bind.  A large 

number of the tagging proteins bind to each RNA molecule when the protein fusion is coexpressed 

with the target RNA.  This forms bright fluorescent particles that can be observed with a microscope.  

It was found that the tagged RNA molecules moved randomly in the cell, traversing the complete 

length of the cell multiple times within a 30 minute observation period, as shown in Figure 1. 

 

Figure 1.  Tagged RNA molecule in an E. coli cell.  These 
epifluorescent images were taken 100 seconds apart.  Notice how 
the RNA molecule (the white dot) moves through the entire cell 
(figure from Ref. [7]). 
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Golding and Cox then categorized the motion of the RNA molecules by measuring the time 

average         during a time interval   |     |.  They found that, on the time scale of 

seconds to minutes, the time average is given by  

                                        (32) 

If the RNA molecules were moving according to Brownian motion, we would have    .  This is 

illustrated in Figure 2, which compares the motion of an RNA molecule in the cell to its motion in a 

solution of 70% glycerol, the latter being an environment that fits the conditions necessary for the 

Brownian motion model to apply. 

 

Figure 2.  A plot of         vs.  .  Here,         is the 

time average and   the time between measurements for the 
movement of a tagged RNA molecule in an E. coli cell.  
Different trajectories are denoted by different colors and 
markers.  The slope of the lines that are fit to the data 

represents the value of   in Equation 32.  Notice how the 

value of   is larger in vitro (in a glycerol-based solution) than in 
vivo (inside an E. coli cell) (figure from Ref. [7]).  
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3.2 Telomeres in Human Cells 

In 2009, Eli Barkai and six other scientists submitted a paper [19] detailing an experiment similar to 

that of Golding and Cox.  However, this group was examining telomeres (sequences of DNA on the 

end of eukaryotic chromosomes) in living human cells.  The telomeres were labeled with a GFP fused 

to the shelterin subunit TRF2, which recognizes the telomeres by attaching to the telomeric sequences 

in human DNA.  The fused protein was expressed transiently in the cells, and the scientists typically 

observed about 60 telomeres in each cell.   

They ended up finding that at short time scales of 0.02 to 100 seconds, the two-dimensional ensemble 

average         (        is the ensemble average in one dimension) follows the pattern of 

subdiffusion, as shown in Figure 3.  Symbolically, we have  

                                (33) 

 

Figure 3.  A log-log plot of 
       

 
  vs.  .  Notice 

how the ensemble average indicates subdiffusion 
until about 100 seconds.  The diffusion of 
fluorescent beads in glycerol is also included; notice 
how it follows standard Brownian motion (figure 
from Ref. [19]). 
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3.3 Lipid Granules in S. Pombe Cells 

In 2011, Jae-Hyung Jeon and seven other scientists published a paper [20] detailing an experiment in 

which they studied the motion of single lipid granules inside S. pombe fission yeast cells. One of the 

ways the scientists studied the single-granule trajectories was with an optical tweezers setup.  The setup 

initially centers a trap on the granule so that no force is exerted.  A restoring Hookean force acts on 

the granule when it starts to move away from the trap center. 

The researchers examined time averages from granules inside cells in two different stages of the cell 

cycle (early mitotic and early telophase).  They observed that the time average         (  is again 

the lag time) was initially proportional to   (standard Brownian motion).  However, the time average 

eventually experienced a turnover, resulting in it being proportional to   , with            , as 

shown in Figure 4.  The time average had turned over to indicate subdiffusion. 

 

Figure 4.          from individual trajectories of lipid 
granules in S. pombe cells.  The upper curves (labeled 
“ET”) correspond to cells in early telophase, and the 
lower curves (labeled “EM”) correspond early mitotic 
cells.  Notice that the time average is not consistently 
what would be expected based on Einstein’s theory of 
Brownian motion.  Instead, standard Brownian motion 
turns over to subdiffusion (figure from Ref. [20]).   
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Chapter 4 

 

CONCLUSION 

 

This thesis examined the motion of particles inside living cells.  Previously, it was thought that such 

particles would behave as particles in a fluid, with Brownian motion.  However, recent experiments 

have shown that Brownian motion does not explain the motion of these particles.  These particles 

diffuse slower than Brownian motion would predict, which makes sense, given that the environment 

inside a living cell is not similar to that inside a container with a dilute solution in it, and the latter is the 

only environment where Einstein’s theory of Brownian movement is applicable.   
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