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Abstract 

A computer cluster was built for the purpose of performing N-body simulation. The planned 

simulations are to study Dark Matter (DM) particles which have self-interactions which behave 

similarly to the Coulomb force. 

The cluster was made of two Apple iMacs. The cosmological simulation code GADGET-2 was used 

to run the simulations and TORQUE Resource Manager was used to manage cluster communication. 

The cluster and software are not limited to DM simulations, but could be used to simulate other exotic 

cosmologies. 
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Chapter 1 

INTRODUCTION &  BACKGROUND  

 

1.1 The Existence of Dark Matter 

A number of 20th century observations point to a discrepancy between the visible mass distribution in 

an astronomical system and the mass distribution implied by the observed state of bodies in the 

astronomical system. The most successful explanation of this discrepancy is that there is additional 

matter, called Dark Matter (DM), which does not interact electromagnetically and so cannot be 

detected directly. There are several pieces of evidence for DM, three of which are described below. 

1.1.1 Rotation Curves 

The earliest evidence for DM was the rotation curves of galaxies in galaxy clusters and stars in galaxies. 

Fritz Zwicky—a Swiss Astronomer who, at the time, was a professor and researcher at the California 

Institute of Technology—was the first person to discover that the observed rotation curves of galaxies 

orbiting in galaxy clusters do not match the Newtonian predictions based on the distribution of the 

visible matter. What Zwicky noticed was that the rotation speeds of galaxies in the Coma Cluster were 

essentially independent of distance from the center of the cluster, despite the fact that the distribution 

of visible matter in the cluster suggested that the galaxies outside the edge of the cluster should have 

been moving significantly slower than those at the edges [1]. 

To understand the Newtonian expectation, consider the gravitational force on a single nebula in a 

cluster with the visible edge at a distance R from the center of the cluster: 

  ( )  
  ( ) 

  
(  ̂)  

 (1.1) 

where r is the nebula’s orbit radius, G is the gravitational constant, M is the mass of the matter inside 
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the nebula’s orbit radius, and m is the mass of the galaxy. Since the gravitational force acts as a 

centripetal force on the orbiting nebula,  

  ( )  
   ( )

 
(  ̂)  

 (1.2) 

where v is the orbital speed of the galaxy as a function of r. Combining (1.1) and (1.2), the orbital 

speed can be found to be 

 ( )  √
  ( )

 
  

 (1.3) 

If the mass inside the orbit has a constant density ρ up to the edge of the cluster, it can be seen that M 

goes like the volume of the matter for galaxies inside the visible edge (   ). Assuming the visible 

matter is the only significant contributor to the gravitational force, M is constant for galaxies outside 

the visible edge (   ). Now, M can be written as a piecewise function: 

 ( )  {

  

 
                    

  

 
                    

 

 (1.4) 

Substituting (1.4) into (1.3) and looking only at the r dependence yields 

 ( )   {
                  

    
 ⁄          

 

 (1.5) 

and it can be seen that v is expected to decrease with r outside of the visible edge of the cluster. What  
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Zwicky observed, however, was that outside the visible edge of the Coma Cluster, v stayed fairly 

constant. He proposed that the discrepancy was due to matter which could not be detected visually, 

which he called “Dark Matter.” 

 

Figure 1. A graph of a synthetic rotation curve made by averaging 1,790 
velocities from 70 galaxies. The solid line is a best-fit to the data, the 
dotted line is the contribution by the visible matter, and the dashed line 
is the contribution by the DM. Ropt is a scaling factor. Figure taken from 
Ref [4]. 

Zwicky realized that not only do rotation curves offer good evidence for the existence of DM, but 

they can also give important information about the structure of nebulae and other cosmological 

structures. By studying a nebula’s—or a galaxy’s—rotation curve, the radial mass distribution of the 

cluster can be inferred, even though most of the mass cannot be visually detected.  

Despite Zwicky’s evidence of DM, the rest of the scientific community was not interested in the 

problem. Most people figured it was just a problem of uncertainty in measurements and would go 

away once more sophisticated instruments were developed [2]. However, by the end of the 1960’s, 
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others [3] also had noticed a discrepancy between observed rotation curves and what was expected 

from the visible light, in this case, the rotation curves of stars within galaxies, rather than galaxy 

clusters.  

After studying many galaxies, it became apparent that this missing mass problem was common to 

galaxies and galaxy clusters alike. Figure 1 shows a rotation curve made by averaging 1,790 velocities 

from 70 galaxies [4]. This rotation curve is a subset of a compilation of about 1,100 galaxies and is a 

group of galaxies which have a similar brightness. The result of this subset is characteristic of the other 

rotation curves in the compilation.  

1.1.2 Gravitational Lensing 

Another piece of evidence for DM is gravitational lensing, a phenomenon of General Relativity.  

 

Figure 2. A diagram showing how light from a source is deflected by the 
lensing object’s gravitational field. The altered location of the observed 
image is shown by the dashed line and the skewed image is represented 
by the crescent shape. The values a and b are the moments of distortion 
and can be used to determine the mass distribution of the lensing 
object. 
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According to General Relativity, mass curves space-time and as a result light is deflected by massive 

objects, as seen in Figure 2. As a result of the lensing, the light source appears to have originated from 

a different location than its actual position and the image is distorted and its shape appears to be 

smeared. 

Gravitational lensing offers another piece of evidence for the existence of DM, as well as a method of 

determining the mass distribution of a lensing object, since the amount that the light is bent depends 

on how massive the lensing object is. This method is better than that of rotation curves [5] because it 

does not have to be assumed that the objects inside a galaxy or galaxy cluster are gravitationally bound 

to that larger cosmological object or that the system is, on average, in equilibrium. In addition, 

gravitational lensing can determine the mass and mass distribution of objects which are made up 

completely of DM and thus visually undetectable. 

 

Figure 3. A photograph of a lensing galaxy—the large spot in the 
middle of the left image—and four objects being distorted by the 
gravitational lens—the spots labeled A-D in right image. The lensing 
galaxy has been removed in the right image by using different light 
filters. Figure taken from Ref [7]. 

The mass and mass distribution of the lensing object can be determined by measuring the moments of 
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distortion—the values a and b in Figure 2—of background images at different locations around the 

lensing object in pictures taken by telescopes (e.g. Figure 3). This can be done because there is a 

sufficiently high density of background galaxies anywhere in the sky [6]. These galaxies are useful in the 

case of gravitational lenses because they are behind most galaxies and galaxy clusters, providing a good 

background to be distorted by the lenses, and because they all share a blue color which is easily 

distinguishable from the red of most galaxies and galaxy clusters being studied. The mass of objects 

such as galaxies and galaxy clusters which have been measured using gravitational lensing is in good 

agreement with the mass which have been determined by rotation curves [5]. 

1.1.3 The Bullet Cluster 

Though DM is one explanation for the discrepancy between visible mass in a cosmological system and 

its gravitational effects on other objects in that system, there are other solutions to the problem which 

have been proposed. One other solution is Modified Newtonian Dynamics (MOND) [8]. MOND is 

the hypothesis that, in the limit of small accelerations, acceleration is not directly proportional to the 

gravitational force, as is stated by Newton’s Second Law, but is, rather, proportional to the unmodified 

acceleration according to the function 

  

  
    

 (1.6) 

where a is the modified acceleration, a0 is a scaling acceleration constant, and g is the unmodified 

acceleration. This modification reproduces a constant speed, which can be seen by solving for a, 

setting it equal to the centripetal acceleration, and using (1.1) for g: 

  √       

 (1.7) 

This result matches the observed rotation curves without the need for undetectable matter. However, 
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the galaxy cluster 1E0657-558, commonly called the Bullet Cluster, provides evidence for the existence 

of a weakly interacting particle which results in undetectable mass in cosmological systems [9]. 

The Bullet Cluster is made up of two sub-clusters, one larger and one smaller, which have collided 

with one another. The bullet-like shape of the smaller sub-cluster indicates a collision and gives the 

cluster its name. Using gravitational lensing, the mass distribution of the Bullet Cluster has been 

determined and is shown in Figure 4. As can be seen, the highest mass concentration is at a different 

location than the visible X-ray gas of the cluster. This may be due to the gas in the two sub-clusters 

colliding and slowing down more than the DM, which is apparently collisionless. The study of the 

Bullet Cluster supports the particle nature of DM as opposed to a modified gravitational explanation 

of previous observations. 

1.2 Motivation 

The simplest model of DM is cold dark matter (CDM), which only interacts via the gravitational and 

weak forces. A CDM model which includes a cosmological constant does well at explaining large-scale 

(≫ 1 Mpc) cosmological observations [11], such as the rate of expansion and topology of the Universe 

and fluctuations of the cosmic microwave background. However, with higher resolution telescopes 

and computer simulations, there is evidence that suggests that the CDM predictions do not agree with 

observational evidence on the galactic scale (≤ a few Mpc) [12]. One such piece of evidence is that the 

radial dependency of galaxy mass densities predicted by CDM simulations is steeper than what is 

observed from rotation curves of galaxies. This discrepancy between the dependencies can be seen in 

the rotation curves in Figure 5. The observational data, shown by circles, are from dwarf and low 

surface brightness (LSB) galaxies and have been taken from Ref [13]. They have been normalized to a 

characteristic scale length rs, which fits that data from the different galaxies to a single shape of a 

rotation curve and can be done since rotation curves of DM dominated galaxies tend to have the same 

shape. The rotation curve from the CDM simulation has been scaled two different ways, one so that it 

fits to the asymptote of the data, and the other so that it fits better at small orbital radii [14]. It can be 

seen that, no matter how the theoretical predictions are normalized, the rotation curves increase too 

quickly to fit the observed data. 
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Figure 4. An image of the X-ray gas of the Bullet Cluster with mass 
distribution contours overlaid on top. The X-ray gas image is from Ref 
[10], and the contours are from Ref [9]. Figure taken from Ref [9]. 

In addition to the mass distribution of DM dominated galaxies being inconsistent with CDM 

predictions, there is also a discrepancy between observations and CDM predictions of how mass 

density depends on total mass. CDM predicts that the central density of haloes should vary with mass, 

with more massive haloes being less concentrated than less massive ones [15]. However, observational 

data of galaxy central densities does not seem to show any dependence on the mass of the galaxy, but 

rather that most galaxies appear to have a central density of ≈0.02 M⊙/pc3, regardless of total mass 

[16], where M⊙ is a solar mass. Another piece of evidence against CDM is the scarcity of dwarf 

galaxies—groups of matter which are smaller than and located inside and around galaxies—which are 

observed. Kauffman, White, and Guiderdoni [17], using a semi-analytic CDM model of the Local 

Group, found that the number of dwarf galaxies which are predicted by CDM is larger than the 

number observed in the Local Group by a factor of 5-10. In the model, there were hundreds of 

objects whereas there are only twenty-eight known members of the Local Group. 
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Figure 5. Rotation curves of dwarf and LSB galaxies. The circles are the 
data from Ref [13]. The values rs and vs are scaling factors. The solid 
line is a fit to this data and the dashed and dotted lines are the rotation 
curves of the simulations from Ref [14], normalized using two different 
methods, one to fit the data at the asymptote, the other to fit the data at 
small orbital radii. Figure taken from Ref [14]. 

One solution to these problems could be self-interacting DM (SIDM), first proposed by Spergel and 

Steinhardt [12]. Unlike CDM, SIDM particles can collide with other SIDM particles, like billiard balls 

hitting one another. SIDM theoretically predicts lower central densities independent of mass and a 

shallower radial dependence on density than CDM because, at high central densities, collisions are so 

common that the number of particles escaping from the center of the halo is the same as the number 

of particles going in, thus maintaining a stable core. In addition, SIDM predicts fewer dwarf galaxies, 

for two reasons. The first is because SIDM haloes are more likely to be affected by tidal forces, due to 

their lower densities and larger core radii. The second is because the DM in a dwarf galaxy’s halo is 

stripped when it collides with a larger halo, since the DM in the larger halo has larger velocities. The 

DM in larger haloes has a higher speed because of the halo’s stronger gravitational potential which, 

when the halo is at equilibrium, results in a higher kinetic energy. Since collisions are unlikely at low 

densities, SIDM does not predict anything different than CDM at large scales where CDM has been 



 14 

successful. SIDM has had some success at reproducing, in computer simulations, the observed inner 

properties of DM [18]. 

A cluster was built in order to simulate DM which is similar to SIDM but has, rather than billiard-ball-

like collisions, a Coulomb-like self-interaction. This theoretical DM is atomic in nature, similar to 

visible matter, but whose Coulomb-like interaction is governed by different a gauge boson [19]. The 

interaction is said to be Coulomb-like because it is a long-range radial force whose magnitude goes like 

r-2 and particles have a positive, negative, or neutral “charge.” Like the Coulomb force, like charges 

repel one another, opposite charges attract one another, and neutral charges have no interaction other 

than gravity.  

 

Chapter 2 

THEORY  

 

2.1 N-body Simulations 

Typically, the number of bodies in a cosmological system—commonly labeled N—is very large (e.g., 

the number of stars in a galaxy). Since the bodies experience gravitational forces from each other, the 

number of forces acting on a body depends on N – 1. Each body has this many forces acting upon it, 

so the number of calculations needed to evaluate the gravitational forces exactly for all the particle 

goes like N(N – 1). 

There are too many particles to obtain the positions and velocities by analytically solving Newton’s 

equations of motion: 

  

  
   

 (2.1) 
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 (2.2) 

where x, v, and m are the position, velocity, and mass of the particle, respectively, and f is the force 

acting on the particle. Because of these complexities, N-body systems must be solved numerically. 

This numerical solution can be done on a computer by simulating particles in a virtual space. These 

simulations are known as N-body simulations. The positions and velocities of these particles after a  

time step are calculated based on the forces acting on each one. For a DM simulation, these forces are 

gravity and any self-interactions being studied. At each time step, a “snapshot” of the simulation is 

taken by the computer. This is a record of the position and velocity of each particle and is recorded so 

that it can be seen how the distribution of particles changes as time progresses.  

2.1.1 Force Calculations 

The gravitational forces acting on a particle in a cosmological N-body simulation are calculated from 

the positions of the other particles in the simulation. A difficulty arises in accurately and efficiently 

assigning positions to each particle. There are several solutions to this problem, two of which are of 

interest for this project: the tree algorithm and the Particle Mesh (PM) methods. 

In the tree algorithm method, the space of the simulation is divided into smaller and smaller sections, 

called nodes, illustrated in Figure 6. Rather than calculating the force from each particle exactly, the 

tree algorithm uses the multipole of the particles in the undivided space, called the root node, to 

calculate the force on a particle. Using the multipole to calculate the force reduce the number of 

calculations for a single particle from N – 1 to the order of logN [20]. However, it also introduces 

some error into the computation. This error can be reduced by using the multipole of the smaller 

nodes, called opening a node. The computer tests the accuracy of the force calculation in some way, 

such as comparing it with the force calculated in the previous time step, and, if the calculation is 
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determined to not be acceptably accurate, the node is opened. This process is repeated until the 

specified level of accuracy is achieved. 

In the Particle Mesh method, the force on one particle is calculated by assigning the positions of the 

other particles to vertices on a grid or mesh. The crudest way to do this, called the nearest grid point 

(NGP) method, is to treat each particle as a point mass and assign its position to its nearest vertex. A 

more sophisticated way of doing this, called clouds-in-cells (CIC) method [21], is to “smear” the 

particles into cubes, called clouds, and assigning them to several vertices based on the mass 

distribution of the cloud, as illustrated in Figure 7. In the diagram, the mass in the bottom left section 

of the cloud is assigned to the vertex at position (i, j), the mass in the bottom right section of the cloud 

is assigned to the vertex at position (i+1, j), the mass in the top left section of the cloud is assigned to  

 

Figure 6. A diagram illustrating how the simulation space is divided into 
nodes in the tree algorithm. 

the vertex at position (i, j+1), and the mass in the top right section of the cloud is assigned to the 

vertex at position (i+1, j+1). The CIC method is a better approximation of the position of the particle 

than the NGP method and introduces less error into the force calculation; however, it also requires 

more processing [22]. 
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Figure 7. A particle at position (x, y) which has been “smeared” into a mass 
cloud. Shading is given to show the four different sections of the cloud 
which are assigned to their respective vertices. 

Once the particles have been laid out in the grid, the mass density at position (i, j) is found by 

summing over the clouds as  

  

 (   )  ∑      (   )

      

 

 (2.3) 

where ρc is the density of the cloud at position (x, y) and aij is the area of the cloud in the cell centered 

at position (i, j) divided by the area of the cell.. The total density can then be determined from the 

density at each vertex. This total density is then transformed into Fourier space, where the calculation 

of the potential from Poisson’s equation becomes simpler and less processor intensive [20]. Poisson’s 

equation for gravity comes from substituting 
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 ( )      ( )  

  (2.4) 

which can be written since the gravitational force is conservative, into Gauss’ Law of gravity: 

   ( )       ( )  

 (2.5) 

Written out, Poisson’s equation for gravity is 

   ( )      ( )  

 (2.6) 

where f(x) is the gravitational force and ρ is the mass density which was determined from the mesh. 

Poisson’s equation can be written in real-space as a convolution of the mass density with a Green’s 

function: 

 ( )  ∫ (    ) (  )       

 (2.7) 

where g(x-x’) is the Green’s function. In Fourier-space, this equation is no longer an integral, but 

simply a multiplication: 

 ̂   ̂( )   ( )  

 (2.8) 

where the “hats” indicate that the functions are now in Fourier-space and k is a wave-number vector. 

Once the gravitational potential is calculated, it is transformed back into real-space and, hence, the 

gravitational force is calculated. 



 19 

The PM method is a faster calculation of the gravitational force than the tree algorithm, since the 

complicated computations of the potential are made easier by doing them in Fourier-space. Another 

advantage of the PM method over the tree algorithm is that there is less error in assigning clouds to a 

grid than from the multipole approximations of the tree algorithm [20]. However, the resolution of a 

simulation is limited by the mesh size. 

The limitations of each method can be overcome by using a hybrid method called the TreePM method 

[23]. In the TreePM method, the short-range forces are calculated using the tree algorithm and the 

long-range forces using the PM method. Using the tree algorithm only at short ranges, which is usually 

set to be slightly larger than the mesh size, maintains a high resolution and limits the number of force 

computations done using the tree algorithm which lowers error and processing time. Using the PM 

method at long-ranges allows for the speed and accuracy of the PM method without sacrificing 

resolution, since the particles are farther away. 

2.1.2 Time Integration 

In an N-body simulation, rather than solving (2.1) and (2.3) with a continuous function for the force, 

the positions and velocities are solved numerically by calculating the forces on the particles for each 

momentary time step. This force is then used to update the positions and velocities for the next time 

step. 

It is not necessarily required that the positions and velocities be updated all at once as with the Euler 

method of integration in which the positions and velocities are updated as follows: 

        
 (  )

 
   

 (2.9)  

              

 (2.10) 

where vi is the velocity of the particle at time-step ti, vi+1 is the velocity at the next time-step, xi and xi+1 
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are the positions of the particle at each respective time-step, f(ti) is the force acting on the particle at ti, 

and m is the mass of the particle. In fact, it turns out that this type of time integration results in large 

disagreements between the numerical and exact solutions (see Figure 8) as well as a loss of total energy 

in the simulation (see Figure 9), meaning energy is not conserved.  

These errors are due to the fact that the above equations are not symplectic. A time integration scheme 

is symplectic if its operators come from an expansion of the equation of motions from a canonical 

transformation using the Hamiltonian of the system. N-body simulations are more accurate when 

using symplectic integrators because they are Hamiltonian systems and so the symplectic integrator 

does not change the phase space volume of the simulation [20]. 

 

Figure 8. A graph showing three different solutions to a Kepler orbit for 
sixteen orbits. The squares are the solution using a symplectic 
integrator, the crosses are the solution using a non-symplectic 
integrator, and the solid line is the exact solution. Note the solution 
using a symplectic integrator oscillates around the exact solution 
whereas the discrepancy between the solution using the non-symplectic 
integrator and the exact solution grows which each orbit. Figure taken 
from Ref [24]. 
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One method of time integration which is symplectic is the leapfrog method [24]. In this method, there 

are two different steps, the kick and the drift. In the kick step, the velocity is updated and in the drift 

step, the position is updated. These updates are a second order truncation of the canonical 

transformation equation, however, unlike other second order integration schemes, they only require 

one force computation per time step. Leapfrog integration is done by alternating the kick and drift 

 
 

Figure 9. Two graphs of the total energy of a simulation of a Kepler 
orbit using two different time integration techniques. The left graph 
used a non-symplectic time integrator and the right used a symplectic 
integrator. The x axis is the number of time-steps taken and the y axis is 
the change in total energy of the system normalized to the total energy. 
Not that the change in total energy of the non-symplectic integrator 
simulation grows increasingly negative, whereas the change in total 
energy of the symplectic integrator simulation oscillates around zero. 
Ideally, the change in total energy will be zero, i.e. energy is conserved 
in the simulation. Figure taken from Ref [25]. 

steps. What makes leapfrog integration different than Euler integration is that rather than updating the 

position and velocity all the way through the time step at once, in the case of the Kick-Drift-Kick 

method, the velocity is updated halfway through the time step, then the position is updated to the next 

time step using the velocity halfway through the time step calculated in the previous step, and finally 

the velocity halfway through the time step is updated to the next time step using the same force used 

in the first kick step. This can be written mathematically as 
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 ⁄

    
 (  )

 
    

 (2.11) (2.11)  

            
 ⁄
    

 (2.12) (2.12)  

         
 ⁄
 

 (    )

 
    

 (2.13) (2.13) 

In addition, the error in the Leapfrog method goes like Δt2, rather than Δt, like the Euler method [20].  

2.2 Parallel Computations 

Since the force on a particle depends only on the positions of the other particles, the force acting on 

one particle can be calculated separately from the forces acting on the other particles and so these 

calculations are well suited for parallel computations. This means that the calculations can be divided 

up and done by different processors. Much time can be saved by dividing the work up like this, since 

multiple calculations can be done at once. 

 

Figure 10. An example of Peano-Hilbert curves in two and three 
dimensions. Figure taken from Ref [20]. 
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When computations are done in parallel, there is a main processor, called the controller, on which the 

job is started. The controller then sends computations to be done on other processors in the cluster, 

called nodes. These nodes then do the calculations they have been assigned and send the results back 

to the controller which compiles and stores the data. 

The method used in this project for determining which nodes get which jobs is by splitting the 

simulation space into different domains using a Peano-Hilbert curve [20]. A Peano-Hilbert curve is a 

type of space-filling fractal that can be used to describe a three-dimensional space as a one-dimensional 

like this is so that the approximation errors do not depend on the number of processors. This is 

because of the similarities between splitting space up using the Tree algorithm and a Peano-Hilbert 

curve. 

Chapter 3 

EXPERIMENT  

 

3.1 Overview 

In order to run N-body simulations which test the distribution of DM with Coulomb-like interactions, 

a cluster of two computers and six processors was built. The initial cluster was small so that building it 

was simple and the concepts of setting up a cluster could be learned easily. Once the small test cluster 

was built, the server could be expanded with more computers without any additional knowledge or 

software. As of the time of this paper’s writing, no steps have been taken to expand the cluster. 

3.2 GADGET-2 

GADGET-2 [20], a cosmological simulation code written by Volker Springel in ANSI C, was the 

software which was used to run the N-body simulations. It can run simulations in parallel, distributing 

jobs to nodes using Peano-Hilbert curves as discussed above, and uses the TreePM algorithm and 

KDK leapfrog technique to calculate the gravitational forces acting on the particles and the time 

integration, respectively. The options in GADGET-2 are varied and possible simulations range from 
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Newtonian Mechanics simulations to purely DM simulations to complex simulations of the formation 

of the Universe. 

GADGET-2 uses three open-source software libraries to run its simulations: the Message Passing 

Interface (MPI) [26], the GNU science library (GSL) [27], and the Fastest Fourier Transform in the 

West (FFTW) [28]. MPI is what gives instructions for the parallel computations. GSL provides a 

library of mathematical routines, such as random number generation and matrix operations. FFTW is 

used to perform the Fourier transforms of the PM force calculations. These software libraries must be 

installed on all of the computers in the cluster in order to run simulations. 

There were three files in the GADGET-2 folder which needed to be edited in order to run a 

simulation: the Makefile, the parameter file, and the initial conditions file. The Makefile makes an 

executable which is run by MPI to start the simulation. Inside the Makefile, there are settings which 

can be changed to set the path to where the libraries for GSL, FFTW, and MPI are stored on the 

computer. The parameter file sets the options for the simulation depending on what type of simulation 

is desired. For example, this is the file which is edited to set the particles to be purely DM particles. 

The parameter file also directs the simulation program to the initial conditions file and sets where the 

snapshots are stored. The initial conditions file holds the information of the positions and velocities of 

the particles at the first time-step; it is essentially the starting snapshot of the simulation. It is written 

using the GNU Data Language (GDL), an open source numerical data analysis and imaging tool. The 

initial conditions are read by the parameter folder once the executable which was made by the Makefile 

has been run. 

GADGET-2 includes files of code which contain all of the instructions for the computer to run 

simulations. These files hold the information for running force computations and they are what need 

to be modified so that the simulations include the Coulomb-like self-interactions. 

Once a simulation has been run, the GDL can be used to image and compile the snapshots into a 

video of the simulation. The snapshots can also be used to measure characteristics of the simulation 

system, such as halo densities and number of dwarf galaxies. 



 25 

3.3 TORQUE 

TORQUE was the Resource Manager used for the cluster. It was the software that controlled the 

communication between computers. Unlike MPI, which gave the instructions for passing information, 

TORQUE was the program which controlled which nodes were given which jobs and did the actual 

information passing. 

To setup the server, TORQUE was first installed on to the controller. The server must then be 

configured, meaning the controller must be given the name and number of nodes. Then, TORQUE 

must be installed to all of the nodes, which is done by making install files on the controller which are 

sent to the nodes and installed. Once TORQUE is installed on all the nodes, they must be configured 

by creating a file containing the controller name on each one. Finally, the computers must be 

authorized to communicate with each other. 

3.4 The Cluster 

The cluster was made out of two Apple iMacs, one had two processor cores (model ID iMac11,2) and 

the other had four (model ID iMac12,1). The computers were connected by Ethernet cables so that 

there would be less of a delay in the data passing compared to that of a wireless connection. An 

example simulation which is included with GADGET-2 of a collision between two galaxies was run to 

confirm that the cluster was working properly. 

3.5 Conclusions and Suggestions for Future Work 

Now that a working test cluster has been built, more computers can be added to grow the cluster. This 

will improve processing power and decrease the amount of time it takes to complete a simulation. 

Another way to decrease processing time would be to use a more sophisticated scheduler. TORQUE 

comes with its own scheduler, which determines which nodes to send computations to and when, but 

it is simple and rudimentary. By having a more advanced scheduler, not only could processing time be 

decreased, but options could be available to not use a node if it is in use by another program, allowing 

for individual computers in the cluster to be used for other purposes even during a simulation. 
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Since the cluster has been built to test a Coulomb-like DM self-interaction, the GADGET-2 code 

must be modified to include this force. Since GADGET-2 uses the TreePM method to calculate 

forces, care must be taken so that this new interaction is include in both the short and long range 

computations of the force. A charge characteristic must be added to the DM particles so that the DM 

can be positively, negatively, or neutrally charged and the force can be attractive or repulsive. This 

characteristic would have to be recorded by the snapshot files and set in the initial conditions. 

Once these modifications have been made, DM simulations could be run. From the simulation results, 

the characteristics of the system relevant to the CDM problem discussed above could be determined. 

Results could be compared between simulations including CDM, Coulomb-like self-interacting DM, 

and a mix of the two. 
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