Reducing Dose While Maintaining Image Quality for Cone Beam Computed Tomography

Peter Kroening

Houghton College 1 Willard Ave Houghton, NY 14744

Brian Winey

Harvard Medical School Massachusetts General Hospital Department of Radiation Oncology Boston, MA 02114

X-Ray Attenuation

- *I*₀: X-ray beam intensity
- *I*: Beam intensity after passing through object
- *x*: Length of x-ray path through object
- μ : Attenuation coefficient

Lambert-Beer Law

$$-dI \propto Idx$$
$$dI = -\mu(x)Idx$$
$$I = I_0 e^{-\int \mu(x)dx}$$

International Journal of Industrial Ergonomics

Apparatus

CT Image Reconstruction

r: Orthogonal distance of beam path to origin

ϑ : Normal vector of the beam path

Birkfellner, Wolfgang. Applied Medical Image Processing

Radon Transformation

$$I = I_0 e^{-\int \mu(x) dx} \Rightarrow \ln\left(\frac{I_0}{I}\right) = \int \mu(x) dx$$

$$P(r, \theta) = \int \mu(x, y) ds$$
Projection Image to be reconstructed

Birkfellner, Wolfgang. Applied Medical Image Processing

Research Motivation

- Reducing radiation to patients
- Minimize scan time
- Ensure adequate image quality

Experimental Methods

- Scan phantoms
 - Catphan
 - Pelvis phantom
- Vary preset settings
- Measure Dose

Scan Presets

Pelvis: 20 mA, 40 mA, 80 mA

Fast Pelvis: 20 mA, 40 mA, 80 mA

Analysis: Image Geometry

Analysis: Image Uniformity

Analysis: CNR

Contrast-to-Noise Ratio

 $m_{prostate}$ –

Tissue ROI: average of outer 3

Prostate

 m_{tissue}

Results: CNR vs Dose

Pelvis/Prostate Image Quality (Prostate Phantom)

Conclusion

- The Bottom Line: Faster is better and less is more
- Patients can be exposed to less dose!

Acknowledgements

- Massachusetts General Hospital: Department of Radiation Oncology
- Brian Winey, Ph.D
- Mark Yuly, Ph.D

Questions?

