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Abstract 

Decay Energy Spectroscopy (DES) results in high energy resolution (1-5 keV @ 5 MeV) 

spectra of decay energies where the energy of each decay is measured as a single event as 

opposed to individual measurements of each decay particle. In order to accomplish this, the 

measured source is not external to the absorber, but embedded within it. DES can be used 

for nuclear safeguards, metrology, and medical isotope development, but measurements are 

affected by incomplete energy capture occurring when decay particles escape the absorber. 

In order to reduce escape likelihood, absorbers can be capped with a layer of gold. Geant4, a 

Monte-Carlo simulation software capable of handling energy transport between particles, is 

used to simulate DES measurements with varying thicknesses of absorber cap. Analysis of 

these spectra shows that the biggest benefit of capping can be realized by adding 5 μm of 

gold to all dimensions, reducing the escape of most alpha-decaying uranium and plutonium 

radionuclides by an order of magnitude. 
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Chapter 1 

INTRODUCTION 

1.1. Decay Energy Spectroscopy: An Early History 

Isotopic composition of radioactive samples can be determined using several well-

established methods, such as alpha spectrometry [ 1 ], beta spectrometry, and gamma 

spectrometry [2]. One of the more novel methods is Decay Energy Spectroscopy (DES), which 

measures the total decay energy, rather than the energy of individual particles. An excellent 

history of DES measurements can be found in [3]. The history of the field under this name 

began in 2012 [4], although research into the technique had already begun in earnest before 

that point. 

1.1.1. Microcalorimeters 

Microcalorimeters are a type of Low Temperature Detector (LTD), any detector which is kept 

at very low temperatures (<1 K) in order to measure the energy of particles. 

Microcalorimeters accomplish this using an absorber with an embedded source to 

thermalize the decay products and measuring the temperature increase in some way, which 

can differ between unique apparatus.  

Microcalorimeters are the apparatus by which DES is performed, but they can also be used 

for generalized alpha and beta spectrometry, as well as gamma applications [5]. 

1.1.2. Absorbers 

An absorber is the part of a DES detector that thermalizes all particles from a decay. The 

material an absorber is made of determines the energy resolution of the spectrum, likelihood 

of event pileup, incomplete thermalization, and peak splitting, so selecting a satisfactory 

material for an absorber is both critical and non-trivial. 
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1.1.3. Transition Edge Sensors 

Transition Edge Sensors (TESs) are made of various metals that become superconducting at 

very low temperatures [6]. In order to determine the amount of thermalization due to a given 

decay, they are kept just at temperatures just above superconducting (about 80 mK) on the 

region between superconducting and normal. In this region, the relationship between 

temperature and resistance is linear and measurable, which means that at a constant current 

or voltage bias, the energy thermalized in the absorber will be proportional to the current or 

voltage measured in the TES. 

1.1.4. Metallic Magnetic Calorimeters 

Metallic Magnetic Calorimeters (MMCs) also measure energy by detecting an increase in 

temperature. However, instead of measuring change in resistance, MMCs make use of 

paramagnets and detect a change in magnetization of a paramagnetic sensor using a 

Superconducting QUantum Interference Device (SQUID) [7]. 

1.1.5. Overview of How DES Works 

DES measurements take advantage of the proportionality of several quantities to measure 

the energy of decays, as detailed in Figure 1. When a particle is thermalized in an absorber, 

the absorber temperature increases by a proportional amount. The absorber is thermally 

linked to a Transition Edge Sensor (TES), which is kept on the transition between normal 

and superconducting so the relationship between resistance and temperature is measurable 

and linear. By operating at a constant voltage or current bias, then, the energy of each decay 

can be read as proportional to the height of a pulse in either current or voltage, whichever is 

not being kept constant. 
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Figure 1. A detailing of the process of Decay Energy Spectroscopy (DES). A 
picture of a DES absorber shows the two prominent features to be a gold 
absorber and a superconducting Transition Edge Sensor (TES), thermally 
linked (upper left). The gold absorber contains an embedded source so that 
when a decay occurs, all particles released will be thermalized as one total 
event with the energy measured being the sum of all individual energies. 
Average stopping distance in gold of each particle type is displayed for each 

particle, determined using SRIM [8] (upper right). The TES is kept on the 
transition between normal (higher temperatures, higher resistance) and 
superconducting (lower temperatures, zero resistance), where the 
relationship between temperature and resistance is measurable and linear 
(lower left). At a constant current or voltage bias, the energy thermalized 
from a decay will be directly proportional to the height of a current or voltage 
pulse. The energy resolution will be proportional to the temperature at 
which the detector is kept and to the square root of the heat capacity of the 
detector (lower right). 

1.2. What is the Perfect Absorber? 

1.2.1. Pros and Cons of DES 

DES has the potential for very high energy resolution (1-5 keV at 5 MeV), can measure 

extremely low activity sources (as low as 1 Bq), does not require chemical separation to 

measure several isotopes simultaneously, and has simplified spectra when compared to 

methods of spectroscopy that yield a peak in the final spectrum for each measured particle. 
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However, precise physical conditions are required for success. Any fluctuation in the 

operating temperature of the detector can yield inconsistencies in measured decay energies, 

inhomogeneities in the absorber resulting from embedding the source can lead to 

incomplete thermalizations and splitting peaks, and there is a delicate balance between 

reasons to make the absorber larger and keeping it smaller due to particle escapes and 

energy resolution loss, respectively. 

1.2.2. Escapes and the Size of Absorbers 

If a particle escapes the absorber without being thermalized, the energy of that particle will 

be lost from that decay measurement. This can lead to a separate peak for the same isotope 

at some amount of energy lower than the main peak that results from a common particle 

with that energy frequently escaping the absorber. In order to minimize escape probability, 

then, it would be helpful to make the absorber larger. However, the width of peaks in a DES 

spectrum is proportional to the specific heat of the detector, so increasing the size of the 

absorber will also degrade energy resolution. The traditional response to these conflicting 

issues is to maintain a small absorber and correct for expected escapes. The challenges and 

methods of doing so will be discussed in Sections 3.5.6 and 3.5.7. An alternative method for 

preventing escapes is introducing a cap to the absorber, which is any material surrounding 

the absorber with the intent of reducing particle escapes. 

1.2.3. Lattice Damage and Kneading Absorbers 

As previously mentioned, one issue that can cause an absorber to perform poorly is related 

to poorly embedding a source within it. One of the most common methods of embedding a 

source is to dissolve it into a solution, then letting that solution evaporate onto the absorber 

which is then folded over to encapsulate the source. This method is used so frequently due 

to the fact that it can be performed with any source and any absorber. However, it is possible 

that a residue from the solvent may remain in the form of a crystalline structure. If this 

occurs, part of the energy from a decay may be deposited not in the absorber itself, but in 

one of these structures. This phenomenon can lead to tailing and even peak splitting, which 

dramatically reduces the quality of the measurement being performed. In order to prevent 

this, a strategy being employed at Los Alamos National Laboratory (LANL) is to knead the 
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absorber after the source has been deposited [9]. This can help to break up any crystalline 

structures present after this deposition and lower the likelihood that energy will be stored 

in one of them instead of being thermalized properly. 

1.2.4. The Search for the Perfect Absorber 

Throughout the history of DES, several different absorber materials and deposition methods 

have been proposed and developed, many of which have resulted in poorer energy 

resolution than expected for a variety of the above reasons. This history has been 

documented very well in [3], but will be summarized here. The first absorber utilized for DES 

was made of Re, which is superconducting at about 1.7 K and naturally contains the primarily 

beta decaying isotope 187Re, which decays primarily through beta decay. Several attempts to 

use this sort of detector were made by multiple groups, but results with expected energy 

resolutions never manifested. Another low decay energy isotope, 163Ho, became the subject 

of focus for electron capture measurements to try to measure the neutrino mass. The initial 

absorber material chosen was epoxy and tin foil with a thermal link, which also suffered 

disappointing results. However, later measurements involving both beta and electron 

capture measurements began utilizing a gold foil absorber with various methods of 

embedding sources, including diffusion welding, dissolving and drying, and a new method 

involving a nanoporous gold absorber, whose small pores would limit the size of any 

crystalline structures formed from co-deposition to 50-100 nm. Similar methods of 

deposition have been utilized for high energy measurements of α-decaying particles more 

recently, with the recent technique mentioned above of kneading an absorber to break up 

crystalline deposits. Recently, the most common absorber material has remained gold foil, 

with the most common method being the dried drop method, likely due to its simplicity. 

1.3. How Is DES Used? 

1.3.1. Nuclear Safeguards 

Nuclear safeguards are, according to the International Atomic Energy Agency (IAEA), a set 

of technical measures that allow the IAEA to independently verify a state’s legal commitment 

not to divert nuclear material from peaceful nuclear activities to nuclear weapons or other 

nuclear explosive devices. Since the Treaty on Non-Proliferation of Nuclear Weapons (NPT) 
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in 1970, all states except for the United States, Russia, France, the United Kingdom, and China 

have been classified as non-nuclear-weapon states (NNWSs) and those who are party to the 

NPT are prohibited from manufacturing or obtaining nuclear weapons. In order to verify that 

this treaty is being honored by all parties, measurements of the masses and isotopic 

compositions of radioactive materials from NNWSs are performed to verify that no materials 

are being diverted from peaceful nuclear processes to weapons programs. Traditional 

methods for determining isotopic compositions can be separated into either Destructive 

Analysis methods (DA) or Nondestructive Assay (NDA). DA methods include mass 

spectrometry and alpha spectrometry, while the most common NDA method is gamma 

spectroscopy. Measuring the mass of samples requires knowledge of the isotopic 

composition and is usually done through neutron multiplicity counting or calorimetry. An 

excellent overview of these methods and their applications can be found in [10] and will be 

summarized here. 

In general, DA methods of isotopic composition determination are more expensive and time 

consuming to implement, but yield more precise results. For example, mass spectrometry 

only has about 0.1% total error, but cannot be performed multiple times on the same source 

and requires extensive sample preparation each time it is utilized. Alpha spectrometry can 

be measured multiple times for the same sample, but has far higher error, about 10%. On the 

other hand, NDA methods tend to be relatively quick, cheap, and repeatedly measurable, but 

with lower accuracy. Gamma spectroscopy does not modify the sample being measured and 

takes very little time, with an accuracy of about 2%. Because of how simple a gamma 

measurement is, this is by far the most commonly used method of determining isotopic 

composition, with DA being utilized most commonly when accuracy and precision are the 

most important concern. 

The DES method of determining isotopic composition falls somewhere between DA and NDA 

characteristics. It promises very high accuracy close to that of DA, with less required sample 

preparation. It does not approach the simplicity of gamma measurements, but does offer the 

ability to measure far smaller samples than possible in other methods with activities as low 

as 1 Bq (1 decay per second). 
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1.3.2. Absolute Activity 

The National Institute of Standards and Technology (NIST) is a facility that develops Certified 

Reference Materials (CRMs) for various applications. CRMs are any sample about which the 

specifications are known incredibly precisely. A new CRM type that could theoretically be 

developed is one whose “massic activity” (unit activity per unit mass) is known to great 

precision [11]. In order to accomplish this, both the mass and the absolute activity of the 

sample must be known with less uncertainty than that of the desired massic activity. The 

current process by which the mass of a sample will be precisely known utilizes a gravimetric 

inkjet dispenser, while the activity of the sample can be determined using DES 

measurements due to the extremely high energy resolution promised by this method. 

1.3.3. Searching for Neutrinos 

One aspect of modern particle physics that eludes complete understanding is that of the 

neutrino. Neutrinos, unlike many particles currently being studied, are incredibly common 

in nature, with millions passing through an area the size of a fingernail per second [12]. 

Despite this abundance, they very rarely interact with matter. This has made the task of 

determining their resting mass one of great difficulty, as it is impractical to measure directly 

through these extremely infrequent interactions with matter. Recent attempts to determine 

an upper limit on this mass have resulted in its steady lowering from a value of 1.1 eV with 

a 90% confidence level in 2019 [13] to the current value of 0.8 eV with a 90% confidence 

level in 2022 [14]. The way that DES can help to contribute to this field is by precisely 

determining the functional form of beta and electron capture spectra. Since neutrinos so 

infrequently interact with matter, they will escape the absorber in nearly all cases. If every 

other product from a decay were then to be perfectly measured and compared to the total 

decay energy for that isotope, the mass of the escaped neutrino could be known with very 

low uncertainty. In order to minimize uncertainties, though, the form of the spectrum must 

be determined very precisely as it nears the total decay energy for the isotope being 

measured, since this is where the value of the rest mass of the neutrino can be determined, 

as seen in Figure 2. Therefore, the potential for increased precision that comes with DES may 

help to further determine the mass of the neutrino, as is described in [15]. 
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Figure 2. The theoretical end region of a beta spectrum. If the rest mass of a 
neutrino was 0 eV, the spectrum would end precisely at the Q value for the 
isotope being measured. However, since the neutrino escapes with its rest 
mass regardless of its kinetic energy, the spectrum actually approaches the 
Q value minus the rest mass of the neutrino. Precisely knowing the functional 
form of the high-energy region of a beta spectrum can help to determine this 
mass. Figure modified from Ref. [16]. 

1.4. How Do These Applications Matter for This Project? 

The goal of this project is improving both the accuracy and precision of measuring 

composition of specifically alpha emitting samples, which lends itself most immediately to 

nuclear safeguards and absolute activity determination. The improved accuracy and 

precision in determining the composition of uranium samples, for example, can be used to 

more confidently confirm or question the declared enrichment level of a uranium sample in 

a nuclear facility. This would also allow the absolute activity to be measured more precisely 

and accurately, benefiting the study of massic activity and the implementation of nuclear 

safeguards. 

1.5. Introduction to DESSIMATE 

1.5.1. What is DESSIMATE? 

Decay Energy Spectroscopy SIMulation for Absolute Total Efficiency (DESSIMATE) is a 

Python software that is capable of displaying spectra from simulations created using Geant4 

[17,18,19] a Monte-Carlo simulation software capable of handling energy transport between 

particles. In addition to displaying these spectra, it is capable of incorporating detector 

broadening due to physical phenomena and therefore not present in these simulated data. 
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This allows users to see what an experimental spectrum measured using DES might look like, 

given certain physical parameters. 

1.5.2. What Can DESSIMATE Do? 

Upon inputting a spectrum created using Geant4, the data and metadata from the file will be 

read and displayed as a histogram, as well as any other spectra that have been read in during 

the same session. DESSIMATE is capable of determining from the metadata of a spectrum 

what the activity percentage of each isotope should be by default, and from this, determining 

the percent composition by mass of each isotope. Users can manipulate either the 

composition by activity or the composition by mass of the sample, which will automatically 

be normalized and used to calculate the other and display the newly determined spectrum 

visualization. DESSIMATE can also, given a region by the user, determine the actual number 

of simulated counts in this region that were from each isotope present in the total simulation. 

This allows for a study of how much overlap is coming from escapes when overlapping 

regions are a concern, which can be used to improve analysis methods of the experimental 

data resembling these simulated spectra to the overall goal of improving accuracy and 

precision in determinations of the isotopic compositions of measured samples. 
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Chapter 2 

THEORY 

2.1. What is Alpha Decay? 

2.1.1. History of Alpha Decay 

Alpha (α) decay was discovered by Ernest Rutherford [20], who differentiated between two 

types of radiation from uranium compounds and called them alpha and beta decay. He found 

that one form of radiation (alpha particles) was stopped very quickly by an aluminum barrier 

and that the other (electrons from beta decay) more readily penetrated aluminum. 

Alpha decay occurs when a parent nucleus ejects an α-particle (4He nucleus). The daughter 

nucleus will then have a lower Z number and atomic number A according to the formula 

 X𝑍
𝐴 → Y𝑍−2

𝐴−4 + He2
4 ,  

where X and Y denote any two elements whose Z numbers are 2 apart, 𝐴 represents some 

atomic number, and 𝑍 represents the Z number of element X. The primary particles released 

in this decay are the daughter nucleus and the α particle as in Figure 3, as well as any gamma-

rays released during the deexcitation of the daughter nucleus. If the parent nucleus has 

bound electrons, the deexcitation of the atomic configuration can lead to ejected electrons 

or X-rays as well. Then, the total decay energy, determined from the mass difference between 

daughter and parent nuclei and also called the Q-value, is simply the energy of all of these 

ejected particles summed together. 

2.2. Decay Product Interactions with Matter 

2.2.1. Why Do We Care? 

In order to accurately measure the energy of all ejected particles, these particles must not 

escape the absorber without being measured. One of the factors that determines the 

likelihood of a particle escaping a DES absorber is its energy. Higher energy particles are 

more likely to escape with all or some of their energy. Understanding the reasons behind this 

may help to predict the behavior of these particles, which can improve analysis methods. In 
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order to understand why this is, some of the most common interaction methods will be 

discussed, all of which involve the transferal of heat between particles. 

 

Figure 3. Visual representation of alpha decay. The leftmost particle 
represents the parent nucleus and the right side displays an α particle being 
ejected and the daughter nucleus recoiling in the opposite direction with less 
speed to conserve momentum. 

 

2.2.2. What is Heat? 

Thermal energy is the energy of a material that is stored in kinetic and vibrational modes. 

The primary energy carriers of heat are electrons (kinetic) and phonons (vibrational). In 

DES, thermalization refers to the process by which the energy of decay products is 

transferred into these modes. Thermal energy can move through the absorber and the speed 

at which this energy moves through a material is described by thermal conductance (G). The 

decay constant τ of the detector is inversely proportional to G, meaning that as G increases 

pulses last longer. If thermal conductance within an absorber is low enough that pulses last 

long enough to pileup and interfere with each other, the measurement is negatively 

impacted. However, if the pulses are too short, some of the energy may not arrive in the 

sensing mechanism quickly enough to be measured as part of the proper decay. 

2.2.3. Compton Scattering 

Compton scattering occurs when an incident photon interacts with some charged particle, 

transferring some portion of its energy to this particle resulting in a deflection path to 

conserve momentum, as shown in Figure 4. This phenomenon can be chained together 
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several times, leading to a gradual decrease in the photon’s energy to the point that the 

energy is eventually transferred into either a vibrational or kinetic mode within the material 

of the absorber itself, at which point the energy is considered thermalized. However, if the 

photon escapes after having lost some of its energy due to Compton scattering, a Compton 

background can appear in the spectrum resulting from irregular amounts of energies 

escaping the absorber. 

2.2.4. Photoelectric Effect 

A similar interaction type to Compton scattering that is more favorable to measurement 

accuracy is the photoelectric effect, which occurs when an incident photon interacts with a 

material that has electrons present. The photon is absorbed and its energy transferred to an 

electron from that material, which is then released from its atomic structure as shown in 

Figure 4. This phenomenon, unlike Compton scattering, results in the full absorption of the 

incident photon energy. In addition, if the released photoelectron came from an orbital that 

was not the outermost in the atom, it is possible that the atomic structure may deexcite, 

causing X-rays or auger electrons to be released in addition to the photoelectron. Because 

few or no photons are released in this process, this usually results in the full thermalization 

of all resulting particles and so does not often impact the final spectrum. 

2.3. Heavy Particle Interaction and Lattice Damage 

The two types of heavy particles (α-particles and daughter nuclei) tend to interact with the 

absorber frequently, having a lower escape probability than other decay particles. However, 

another issue that can arise from these interactions is that of lattice damage stemming from 

collisions of ions produced in decays with nuclei in the absorber [ 21 ]. Some of these 

collisions will result in all energy being thermalized similarly to the processes for photons, 

but some result in energy being stored within the absorber itself as lattice damage. Because 

the operating temperature is so low, this damage remains indefinitely. This means that any 

energy stored in this lattice damage will not be thermalized and is lost in much the same way 

as it would have been had it escaped the absorber. When lattice damage occurs, the energy 

of a peak in a spectrum is lower than expected and suffers from broadening and tailing due 

to random distribution in amount of energy loss. 
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Figure 4. Pictorial representation of Compton scattering and the 
photoelectric effect. a) An incident photon impacts an electron and transfers 
momentum and kinetic energy to it, resulting in a lower energy scattered 
photon. b) An incident photon transfers all of its energy to a bound electron 
such that its kinetic energy is the energy of the incident photon minus its 
original binding energy. In this case, since the photoelectron did not come 
from the innermost orbital, it is possible that the atomic structure may 
deexcite, causing X-rays or auger electrons to be released as well as the 
photoelectron. 

2.4. Geant4 Introduction 

Geant4 is a Monte-Carlo simulation software capable of handling energy transport between 

particles. It does this by using tabulated nuclear and atomic data, such as decay branching 

ratios and atomic masses of isotopes. For each particle released in a simulated decay, the 

distribution of distance such a particle will travel through the material of the absorber will 

be determined, and the distance the particle will travel through the absorber is generated 

from this distribution. If the particle reaches this distance and is still within the absorber, an 

interaction with the absorber is simulated and the resulting particles continue this process 

until all energy has either escaped the absorber or been thermalized. For each decay, the 

total amount of energy thermalized in the absorber can then be recorded. With this 

information, one can determine what a DES spectrum might look like for the simulated 

scenario by graphing these energies in a histogram. The assumptions involved in this process 

include a perfect thermal link from the absorber to the TES, no temperature fluctuations in 

the detector that introduce noise to the measurement of the energy thermalized, and no 

detector broadening effect on the spectrum, accuracy in the tabulated branching ratios, 

independence between isotopes (no decay products from one isotope can interact with any 

other isotope present in the absorber), and no interference between decays while measuring 

(in other words, a complete time independence, including lack of dead time consideration). 
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2.5. DESSIMATE Required Functionalities 

Actually visualizing the histograms of measured energies provided by Geant4, among other 

tasks, is the role of DESSIMATE. In order for DESSIMATE to successfully be implemented, it 

must be able to sum multiple spectra from individual isotopic simulations. It must also be 

able to determine either the activity or mass by isotope from the spectrum using a user input 

of relative mass or activity percentages. Finally, it must be able to determine how many 

counts within a given energy region correspond to which isotope. 

2.6. Necessary Decay Equations 

2.6.1. Generic Decay Equations 

In order to determine the mass of an isotope by its activity, a relationship between the two 

must be established. If the atomic mass of an isotope 𝑚 X𝑍
𝐴  and the number of present atoms 

of that isotope 𝑁 X𝑍
𝐴  are known, the total present mass of that isotope 𝑀 X𝑍

𝐴  is 

 𝑀 X𝑍
𝐴 = 𝑚 X𝑍

𝐴 × 𝑁 X𝑍
𝐴 ,  

Given the half-life of an isotope (𝑡1/2) and defining the quantity λ (the “decay constant”, or 

the probability of decay per nucleus per second) as 
ln2

𝑡1/2
 for a particular isotope, the change in 

the number of atoms with respect to time 
𝑑𝑁(𝑡)

𝑑𝑡
 can be defined as 

 𝑑𝑁(𝑡)

𝑑𝑡
= −λ𝑁(𝑡) (1) 

which, when integrated, yields 

 𝑁(𝑡) = 𝑁0𝑒−λ𝑡,  

where 𝑁0 is the number of nuclei present at time 𝑡 = 0. Using the expanded form of λ now 

gives 

 
𝑁(𝑡) = 𝑁0 × (

1

2
)

𝑡

𝑡1/2 ,  

where 
𝑑𝑁(𝑡)

𝑑𝑡
 is the activity of the isotope, measured in decays per second or Becquerels (Bq). 

However, this determination assumes that a certain number of nuclei of an isotope are 

present at the start of the scenario and that no new parent nuclei are created, something that 
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can be false if the isotope in question is itself the product of another decay. In order to 

address this issue, the issue of decay chains must be explored. 

2.6.2. Decay Chain Equations 

The simple version of a decay chain is one where an unstable isotope decays into another, 

still unstable isotope. This decay continues until a stable isotope is reached. An example of 

such a decay chain is that of U 
238 , which through a series of alpha and beta decays through 

elements such as thorium, polonium, and bismuth, eventually decays into stable Pb 
206 . The 

numbers of atoms of each intermediary isotope at any given time is less trivial to calculate, 

but can be determined using differential equations. For example, the first intermediate 

isotope in the U 
238  decay chain is Th 

234 . The rate of change of the number of atoms of Th 
234  

present in a sample is 

 𝑑𝑁𝑇ℎ−234(𝑡)

𝑑𝑡
= λ𝑈−238N𝑈−238(t) − λ𝑃𝑎−234N𝑃𝑎−234(t), (2) 

where 𝑁X(𝑡) is the number of atoms of element X. This is because the number of atoms of 

Th 
234  decreases each time a Pa 

234  atom is created via 234Th decay and increases every time 

a U 
238  atom decays. This value can be calculated for any of the isotopes present in the decay 

chain of 238U, pictured in Figure 5, at any given time if there is a time at which the isotopic 

composition of the sample is known. 

 

Figure 5. The most common decay chain for 238U. Each isotope present in this 
diagram will be present in some amount in any source that contains 238U until 
all of the 238U has decayed. The decay mode of each isotope is listed and 
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labeled. Using the Bateman equation for isotopic composition determination, 
it is possible to determine the amount of each isotope present at any point in 
time given a time when the overall composition is known. 

For uranium samples, the isotopes formed during this chain can largely be ignored, since 

they are either not the focus of measurements of these samples, or, in the case of other 

uranium isotopes, subject to long half lives in both the thorium isotope created by the initial 

decay (~24 days) and the uranium isotope that would be created in this chain (~4 billion 

years). However, for plutonium samples, one of the products of 241Pu is 241Am, the relative 

frequency of which must be derived. The complication of a plutonium sample composition 

over time is shown in Figure 6. In addition to this complication, it is possible that the time at 

which the plutonium isotopics are measured and the time at which the americium 

composition is known are two different times. In order to determine the amount of 

americium present in such a sample, then, a more complicated decay correction must be 

performed. 

 

Figure 6. Plutonium isotopic composition over time. (left) all isotopes shown 
as a function of time, with the date at which the composition was measured 
precisely. (right) a zoom to the isotopes that make up less than 3% of the 
total plutonium mass. In this plot, the 241Am can be seen growing into the 
sample as the 241Pu present gradually decays into it. 
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2.6.3. Plutonium Decay Chain Equation Derivation 

How to determine isotopic composition over time in plutonium sources is detailed by T. 

Sampson and J. Parker [22], whose process will be followed here. Implementing Equation 

(2) in the case of Am 
241  yields 

 𝑑𝑁A𝑚−241(𝑡)

𝑑𝑡
= −λA𝑚−241𝑁A𝑚−241(𝑡) + 𝐾Pu−241λPu−241𝑁Pu−241(𝑡),  

where 𝐾𝑃𝑢−241 is the fraction of Pu 
241  decays that lead to Am 

241 , which is 0.9999754 [22]. 

Assume a solution with form 

 NAm−241(t) = 𝐵𝑒−λA𝑚−241𝑡 + 𝐶𝑒−λ1𝑡  

and  

 NPu−241(𝑡) = NPu−241
𝑎 𝑒−λPu−241(𝑡−𝑡𝑎),  

where the superscript 𝑎  represents a quantity at the time of the measurement of the 

Am 
241 /Pu ratio and 𝐵 and 𝐶 are constants. The initial conditions for this solution would be 

that at 𝑡 = 𝑡𝑎, 

 𝑁A𝑚−241(𝑡𝑎) = 𝑁A𝑚−241
𝑎   

and 

 𝑁𝑃𝑢−241(𝑡𝑎) = 𝑁𝑃𝑢−241
𝑎 .  

The complete solution is then 

 𝑁A𝑚−241(𝑡) = 𝑁A𝑚−241
𝑎 𝑒−𝜆A𝑚−241(𝑡−𝑡𝑎) +

𝐾𝑃𝑢−241 (
𝜆𝑃𝑢−241

𝜆𝑃𝑢−241−𝜆A𝑚−241
) 𝑁𝑃𝑢−241

𝑎 (𝑒−𝜆A𝑚−241(𝑡−𝑡𝑎) − 𝑒−𝜆𝑃𝑢−241(𝑡−𝑡𝑎)), 
(3) 

which can be placed in terms of mass instead of atoms by noting that 

 
𝑁X =

𝑚X ⋅ 𝑁𝐴

𝐴X
,  

where 𝑁X is the number of atoms, 𝑚X is the mass of element X in grams, 𝐴X is the atomic 

mass in grams/mole, and 𝑁𝐴  is Avogadro’s number ( 6.022045 × 1023 mol−1 ). Then, 

𝐴𝐴𝑚−241, the atomic mass of Am 
241 , is 241.0568273(12) amu [23] and 𝐴𝑃𝑢−241, the atomic 

mass of Pu 
241 , is 241.0568496(12) amu [24]. This yields the simplification of Equation (3): 
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𝑚𝐴𝑚−241(𝑡)

𝐴𝐴𝑚−241
=

𝑚𝐴𝑚−241
𝑎

𝐴𝐴𝑚−241
𝑒−λ𝐴𝑚−241(𝑡−𝑡𝑎) + 𝐾𝑃𝑢−241 (

λ𝑃𝑢−241

λ𝑃𝑢−241 − λ𝐴𝑚−241
)

𝑚𝑃𝑢−241
𝑎

𝐴𝑃𝑢−241
 

(𝑒−λ𝐴𝑚−241(𝑡−𝑡𝑎) − 𝑒−λ𝑃𝑢−241(𝑡−𝑡𝑎)). 

 

Defining 𝐾2 ≡
𝐴𝐴𝑚−241

𝐴𝑃𝑢−241
= 0.999607(29) yields 𝐾𝑃𝑢−241𝐾2 = 0.999583(29), and the mass of 

Am 
241  is described by 

 𝑚𝐴𝑚−241(𝑡) = 𝑚𝐴𝑚−241
𝑎 𝑒−λ𝐴𝑚−241(𝑡−𝑡𝑎)

+ 𝐾𝑃𝑢−241𝐾2 (
λ𝑃𝑢−241

λ𝑃𝑢−241 − λ𝐴𝑚−241
) 𝑚𝑃𝑢−241

𝑎  

(𝑒−λ𝐴𝑚−241(𝑡−𝑡𝑎) − 𝑒−λ𝑃𝑢−241(𝑡−𝑡𝑎)). 

(4) 

However, the things directly measured are not absolute masses, but the mass ratios to total 

plutonium. Therefore, defining 𝑚  as the total plutonium mass in the sample at a time 

denoted by its superscript, 

 
𝑅𝐴𝑚−241(𝑡) =

𝑚𝐴𝑚−241(𝑡)

𝑚(𝑡)
, (5) 

where 𝑅𝐴𝑚−241(𝑡) is the mass ratio of Am 
241  to all plutonium in the sample at some time 𝑡. It 

should be noted also that the mass decays with the same functional form as the number of 

atoms; that is, 

 𝑚𝑖(𝑡) = 𝑚𝑖
𝑎𝑒−λ𝑖(𝑡−𝑡𝑎)  

for isotope 𝑖 of plutonium with 𝑚𝑖
𝑎 grams present at time 𝑡 = 𝑡𝑎. The total mass of plutonium 

present in the sample is simply the sum of the mass of each isotope present, or 

 𝑚(𝑡) = ∑ 𝑚𝑖(𝑡)

𝑖

= ∑ 𝑚𝑖
𝑎𝑒−λ𝑖(𝑡−𝑡𝑎)

𝑖

, (6) 

where summing over 𝑖 represents including all plutonium isotopes present in the sample. 

Since there are now expressions for both 𝑚𝐴𝑚−241(𝑡) and 𝑚(𝑡) in Equations (4) and (6), 

respectively, Equation (5) can be rewritten as 

 

𝑅𝐴𝑚−241(𝑡) =
𝑚𝐴𝑚−241

𝑎 𝑒−λ𝐴(𝑡−𝑡𝑎) + 𝐾𝑃𝑢−241𝐾2 (
λ𝑃𝑢−241

λ𝑃𝑢−241 − λ𝐴
) 𝑚𝑃𝑢−241

𝑎 𝑒diff

∑ 𝑚𝑖
𝑎𝑒−λ𝑖(𝑡−𝑡𝑎)

𝑖

, (7) 
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where 𝑒diff  represents the difference in the exponentials from Equation (4). Dividing the 

numerator and denominator by 𝑚𝑎 = ∑ 𝑚𝑖
𝑎

𝑖  yields 

 𝑅𝐴𝑚−241(𝑡)

=

𝑚𝐴𝑚−241
𝑎

𝑚𝑎 𝑒−𝜆𝐴𝑚−241(𝑡−𝑡𝑎) + 𝐾𝑃𝑢−241𝐾2 (
𝜆𝑃𝑢−241

𝜆𝑃𝑢−241 − 𝜆𝐴𝑚−241
)

𝑚𝑃𝑢−241
𝑎

𝑚𝑎 𝑒diff

∑
𝑚𝑖

𝑎

𝑚𝑎 𝑒−𝜆𝑖(𝑡−𝑡𝑎)
𝑖

, 
(8) 

which can be further simplified using the definition of 𝑅𝑖 ≡ 𝑚𝑖/𝑚 to represent the mass ratio 

of any plutonium isotope 𝑖 and total plutonium content. With this simplification, Equation 

(8) becomes 

 𝑅𝐴𝑚−241(𝑡)

=
𝑅𝐴𝑚−241

𝑎 𝑒−𝜆𝐴𝑚−241(𝑡−𝑡𝑎) + 𝐾𝑃𝑢−241𝐾2 (
𝜆𝑃𝑢−241

𝜆𝑃𝑢−241 − 𝜆𝐴𝑚−241
) 𝑅𝑃𝑢−241

𝑎 𝑒diff

∑ 𝑅𝑖
𝑎𝑒−𝜆𝑖(𝑡−𝑡𝑎)

𝑖

. 

(9) 

This format contains one well-known quantity (𝑅𝐴𝑚−241
𝑎 , or the ratio of Am 

241 /Pu at the time 

of Am measurement), but also contains quantities that are not generally known already (the 

isotopic fractions of plutonium at the time of measurement of the americium composition). 

In order to account for this, we must decay correct the plutonium isotopics from the time at 

which they were measured to the time at which the Am content was measured. In other 

terms, we need to find 𝑅𝑖
𝑎 in terms of 𝑅𝑖

𝐼 , where the superscript 𝐼 represents a quantity at the 

time of the Pu isotopic measurement. The first step in this process is simply decay correcting 

isotopic masses from time 𝑡𝐼  to time 𝑡, which can simply be represented as 

 𝑚𝑖(𝑡) = 𝑚𝑖
𝐼𝑒−𝜆𝑖(𝑡−𝑡𝐼).  

Since 𝑚(𝑡) = ∑ 𝑚𝑖(𝑡)𝑖 , 

 𝑚(𝑡) = ∑ 𝑚𝑖
𝐼𝑒−𝜆𝑖(𝑡−𝑡𝐼)

𝑖 .  

Then, since 𝑅𝑖(𝑡) =
𝑚𝑖(𝑡)

𝑚(𝑡)
, 

 
𝑅𝑖(𝑡) =

𝑚𝑖
𝐼𝑒

−𝜆𝑖(𝑡−𝑡𝐼)

∑ 𝑚𝑖
𝐼𝑒−λ𝑖(𝑡−𝑡𝐼)

𝑖

.  



25 
 

Similarly to the process between Equations (7) and (9), both sides of the fraction can be 

divided by 𝑚𝐼 to yield 

 
𝑅𝑖(𝑡) =

𝑅𝑖
𝐼𝑒

−𝜆𝑖(𝑡−𝑡𝐼)

∑ 𝑅𝑖
𝐼𝑒−𝜆𝑖(𝑡−𝑡𝐼)

𝑖

. (10) 

Considering Equation (9) again, the denominator can be rewritten using this decay 

correction as 

 
∑ 𝑅𝑖

𝑎𝑒−𝜆𝑖(𝑡−𝑡𝑎)

𝑖

=
∑ 𝑅𝑖

𝐼𝑒−𝜆𝑖(𝑡𝑎−𝑡𝐼)𝑒−λ𝑖(𝑡−𝑡𝑎)
𝑖

∑ 𝑅𝑖
𝐼𝑒−λ𝑖(𝑡𝑎−𝑡𝐼)

𝑖

,  

 which simplifies to 

 
∑ 𝑅𝑖

𝑎𝑒−𝜆𝑖(𝑡−𝑡𝑎)

𝑖

=
∑ 𝑅𝑖

𝐼𝑒−λ𝑖(𝑡−𝑡𝐼)
𝑖

∑ 𝑅𝑖
𝐼𝑒−𝜆𝑖(𝑡𝑎−𝑡𝐼)

𝑖

.  

Defining 

 𝐹(𝑎) ≡ ∑ 𝑅𝑖
𝐼𝑒−λ𝑖(𝑡𝑎−𝑡𝐼)

𝑖

  

and 

 𝐹(𝑡) ≡ ∑ 𝑅𝑖
𝐼𝑒−𝜆𝑖(𝑡−𝑡𝐼)

𝑖

  

as the sum of the fraction of plutonium of each isotope at time 𝑎 and 𝑡, respectively, means 

that Equation (9) has become 

 𝑅𝐴𝑚−241(𝑡) =
𝐹(𝑎)

𝐹(𝑡)
[𝑅𝐴𝑚−241

𝑎 𝑒−λ𝐴(𝑡−𝑡𝑎) +

𝐾𝑃𝑢−241𝐾2 (
λ𝑃𝑢−241

λ𝑃𝑢−241−λ𝐴𝑚−241
) 𝑅𝑃𝑢−241

𝑎 𝑒diff]. 
(11) 

Having removed 𝑅𝑖
𝑎 from the equation, the next step is to use Equation (10) to also remove 

𝑅𝑃𝑢−241
𝑎  in much the same way. Using the same method, 

 
𝑅𝑃𝑢−241

𝑎 =
𝑅𝑃𝑢−241

𝐼 𝑒−λ𝑃𝑢−241(𝑡𝑎−𝑡𝐼)

∑ 𝑅𝑃𝑢−241
𝐼 𝑒−𝜆𝑃𝑢−241(𝑡𝑎−𝑡𝐼)

𝑖

=
𝑅𝑃𝑢−241

𝐼 𝑒−𝜆𝑃𝑢−241(𝑡𝑎−𝑡𝐼)

𝐹(𝑎)
.  

This allows the removal of 𝑅𝑃𝑢−241
𝑎  in Equation (11), yielding 
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𝑅𝐴𝑚−241(𝑡) =

𝐹(𝑎)

𝐹(𝑡)
𝑅𝐴𝑚−241

𝑎 𝑒−λ𝐴𝑚−241(𝑡−𝑡𝑎)

+
𝐾𝑃𝑢−241𝐾2

𝐹(𝑡)
(

λ𝑃𝑢−241

λ𝑃𝑢−241 − λ𝐴𝑚−241
) 𝑅𝑃𝑢−241

𝐼 𝑒−λ𝑃𝑢−241(𝑡𝑎−𝑡𝐼) 

[𝑒−λ𝐴𝑚−241(𝑡−𝑡𝑎) − 𝑒−λ𝑃𝑢−241(𝑡−𝑡𝑎)]. 

(12) 

This format allows for the ratio Am/Pu 
241  to be calculated at any point in time using only 

quantities commonly known due to measurement. The final quantity to be calculated, then, 

is the mass of plutonium at some time given that at one point the mass was known and at 

some other point the isotopic composition was known. The beginning of this derivation is 

the decay of the mass of each isotope as 

 𝑚𝑖(𝑡) = 𝑚𝑖
𝑝𝑒−λ𝑖(𝑡−𝑡𝑝),  

where the superscript 𝑝  refers to a quantity at the time when the plutonium mass was 

measured. The total mass is therefore 

 𝑚(𝑡) = ∑ 𝑚𝑖(𝑡)𝑖 = ∑ 𝑚𝑖
𝑝𝑒−𝜆𝑖(𝑡−𝑡𝑝)

𝑖 ,  

and multiplying the right side by a 
𝑚𝑝

𝑚𝑝 factor yields 

 
𝑚(𝑡) = 𝑚𝑝 ∑

𝑚𝑖
𝑝

𝑚𝑝 𝑒−λ𝑖(𝑡−𝑡𝑝)
𝑖 = 𝑚𝑝 ∑ 𝑅𝑖

𝑝𝑒−λ𝑖(𝑡−𝑡𝑝)
𝑖 . (13) 

Then, from Equation (10), 

 
𝑅𝑖(𝑡𝑝) = 𝑅𝑖

𝑝 =
𝑅𝑖

𝐼𝑒
−𝜆𝑖(𝑡𝑝−𝑡𝐼)

∑ 𝑅𝑖
𝐼𝑒−𝜆𝑖(𝑡𝑝−𝑡𝐼)

𝑖

. (14) 

Considering both Equations (13) and (14) then yields 

 
𝑚(𝑡) = 𝑚𝑝

∑ 𝑅𝑖
𝐼𝑒−λ𝑖(𝑡𝑝−𝑡𝐼)𝑒−λ𝑖(𝑡−𝑡𝑝)

𝑖

∑ 𝑅𝑖
𝐼𝑒−λ𝑖(𝑡𝑝−𝑡𝐼)

𝑖

,  

which, with 𝐹(𝑚) ≡ ∑ 𝑅𝑖
𝐼𝑒−λ𝑖(𝑡𝑝−𝑡𝐼)

𝑖 , can be expressed as 

 
𝑚(𝑡) =

𝑚𝑝 ∑ 𝑅𝑖
𝐼𝑒−λ𝑖(𝑡−𝑡𝐼)

𝑖

𝐹(𝑚)
. (15) 
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With Equation (10), Equation (12), and Equation (15), then, the plutonium isotopic 

composition, Am 
241 /Pu ratio, and the plutonium mass, respectively, can be calculated at any 

time. 

2.6.4. DESSIMATE Decay Chain Considerations 

In order to see what a measurement of a source with known composition at one point in time 

might look like at some other point in time, DESSIMATE would need to be able to use these 

equations to perform a decay correction process. For a uranium source, the simpler decay 

chain could be used, but for a plutonium source, the method derived by Sampson would be 

necessary to implement. Using these corrections, though, it would be possible to find what 

the isotopic composition of any sample would be at any time given that it was known at some 

point in time. 
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Chapter 3 

DES ANALYSIS USING MODIFIED ROI METHOD 

3.1. DES Detector Overview 

The central piece of a DES experiment is the absorber. Critically, the source being measured 

will be embedded in this absorber so that the energy of all particles released in a decay will 

be thermalized simultaneously. When this energy is thermalized, the absorber heats up by 

an amount proportional to the thermalized energy. The absorber is in thermal contact with 

a superconducting Transition Edge Sensor (TES), which causes this sensor to also heat up. 

The temperature this absorber-sensor system is kept at is the region where the TES is on the 

transition between normal and superconducting, usually about 80 mK, because in this 

region, the relationship between temperature and resistance of the TES is both measurable 

and linear. Therefore, at a constant voltage or current bias, a pulse can be registered from 

each decay measured, with the pulse’s height being directly proportional to the energy 

measured in that decay. 

3.2. Operating Temperature 

In order to achieve such a low operating temperature, a cryostat with several temperature 

stages is implemented. The first stage goes from room temperature to ~4 K. This stage 

utilizes compressing and decompressing gaseous helium. The second stage utilizes an 

adiabatic demagnetization refrigerator (ADR), which manipulates entropy to remove heat 

from the location of the detector until the temperature is about 60 mK. The locations of these 

temperature stages in a DES cryostat are shown in Figure 7. This process actually renders 

the system at slightly lower temperatures than desired, so the level of the voltage bias at 

which the TES is maintained is determined such that the operating temperature is within the 

region between normal and superconducting for the TES. 
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3.3. Data Stream Analysis 

Pictured in Figure 8 is the spectrum of measured energies determined from raw output data 

of a DES measurement. This spectrum is a histogram of measured energies and is the 

beginning of the final step in analyzing a DES measurement, but several corrections are made 

in order for the data to arrive in this form. 

 

Figure 7. A picture of a DES cryostat with labeled temperature stages. The 
actual detector and absorber with embedded source would be located in the 
lowest stage, where the TES can be in the temperature region between 
normal and superconducting. 
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Figure 8. An experimentally measured uranium DES spectrum. The plot is a 
histogram of measured energies, with the x-axis representing energy and the 
y-axis representing the number of counts in each energy bin. The location of 
the Q-value for each isotope is shown as a dotted line. 

3.3.1. Time Dependance 

One such correction involves how decays are measured over time, which directly relates to 

thermal energy. Thermal energy is the energy of a material that is stored in kinetic and 

vibrational modes. The primary energy carriers of heat are electrons (kinetic) and phonons 

(vibrational). The thermal energy can move through the absorber and the speed at which 

this energy moves through a material is described by thermal conductance (G). If thermal 

conductance within an absorber is low enough that a decay occurs and its energy is 

thermalized while the energy from a previous decay is still moving from the absorber to the 

sensor, it is possible that the pulses relating to these decays will interfere with each other 

through pile-up. The method of handling this in analysis varies from simply disregarding all 

such pulses to attempting to deconvolve the counts. Therefore, any reduction in thermal 

conductance of the absorber will decrease energy resolution, but may also lead to increased 

pileup levels and dead time, because the pulse decay time has an exponential decay constant 

of G, impacting spectral measurements. 

3.4. Geant4 Simulation Input/Output 

In order to simulate a DES measurement, Geant4 input files provide the dimensions of the 

absorber, the material of the absorber, the distribution of the source throughout the 

absorber, and the isotope to be simulated, as seen in Figure 9 and Appendix A. The output file 
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contains some metadata about the simulation, such as the dimensions and material of the 

absorber and source within, as well as the histogram of measured energies, as seen in Figure 

10. 

3.5. DESSIMATE Features 

3.5.1. Loading Spectra 

One of the most basic features DESSIMATE must be able to perform is summing multiple 

spectra together. However, even this has some complications in its implementation. 

DESSIMATE needs to be able to confirm that all spectra are compatible with each other; that 

is, their energy bins must have the same widths and be aligned with each other. For this 

reason, when a new spectrum is loaded into DESSIMATE, the energy of its first bin and its 

bin width are recorded. These values are compared with the currently loaded spectra, if 

there are any, and the spectrum is accepted if and only if the bin width is identical and the 

first bin energy level is a multiple of this bin width from the current first bin energy level. If 

the first bin or last bin have different values from the currently existing values, any 

histograms that need to be extended are padded with zeroes until all spectra have the same 

energy bins. This allows for a visualization of all spectra together, along with a summation 

of them all. 

 

Figure 9. Portion of Geant4 input file example. This file shows the setting of 
the material and dimensions of the absorber, the dimensions of the source, 
and the dimensions of the chip the absorber is located on. The full input file 
is located in Appendix A. 
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3.5.2. Convolving Spectra 

In order to simulate the peak broadening due to a physical detector performing a 

measurement, a convolution with a Gaussian is performed. The width of this Gaussian is 

adjustable by the user at any point. 

3.5.3. Populating Mass/Activity Table 

As spectra are uploaded to DESSIMATE, the isotopic composition of the spectrum is 

determined by both mass and activity and displayed in the table shown in Figure 11. In order 

to initially populate this table, the activities for each isotope are assumed to be the number 

of counts simulated. The time it would take for these counts to be simulated is determined 

for each isotope, the lowest of these times is considered the length of the measurement, and 

the actual number of counts measured in this time for each isotope is determined. These 

activities are normalized and converted to mass percentages by dividing by the appropriate 

decay constant (λ), which by Equation (1) will give the number of atoms present for each 

isotope. Then, simply multiplying this number by each isotope’s atomic mass leaves mass 

amounts for each isotope, which can be normalized to determine mass percentages. The 

process of determining activity percentages from mass percentages simply reverses this 

process. 
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Figure 10. Geant4 output file example. The metadata of the simulation that 
created this spectrum is listed, including the isotope simulated, source 
distribution within the absorber, number of particles simulated, and the 
number of bins in the histogram. After the metadata, the file contains only 
the bin energies and the number of counts with energies measured in these 
bins as a two-column text file. 

3.5.4. Updating Mass/Activity Table 

In order to make DESSIMATE more versatile, this mass/activity table is editable by users. If 

this is done, the same process needs to be performed to determine either mass composition 

or activity composition given the other. This process is done identically to the initialization 

version, but now utilizes values input by the user. 



34 
 

 

Figure 11. DESSIMATE table for isotopic composition by mass or activity. For 
each isotope, the raw and percentage of both mass and activity is displayed. 
Either of these can be updated and used to determine the other. If this 
happens, the percentages will be automatically normalized. 

3.5.5. Determining Counts in Region 

The process of determining how many counts are located in a particular energy region is 

critical in particular to the current DES uranium analysis method. Since each isotope has a 

simulated spectrum discrete from other isotopes, DESSIMATE is capable of determining not 

only the number of counts in a region but also the number of counts of each isotope in that 

region. This is done by, for each spectrum, simply summing the values in each bin located 

within the given energy region. While trivial, this process is critical to actually analyzing 

spectra from uranium sources. 

3.5.6. Uranium Analysis Regions 

Because there are so many escape peaks from 235U, using a peak-fitting method is not the 

current method of analyzing uranium spectra. Instead, counts are assigned to the energy 

region (region of interest, or ROI) in which they are located. In order for this method to work, 

regions should have most of the counts of the isotope they represent and few of the counts 

from other isotopes. An example of such regions is shown in Figure 12. The most obvious 

issue with these regions is the fact that the 236U region is fully embedded in the 235U region. 
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This could be a simple fix of removing the number of counts in the 236U region from the 

number of counts in the 235U region to determine the counts of both isotopes. Unfortunately, 

there are escape peaks from 235U that are located in the 236U region, and this means that there 

will need to be a correction factor to determine which counts are from 235U and which are 

from 236U. 

 

Figure 12. A simulated spectrum of a DES measurement with energy regions. 
The region from 4.8-4.9 MeV represents 234U, 4.285-4.7 MeV represents 235U, 
4.56-4.585 MeV represents 236U, and 4.255-4.285 MeV represents 238U, with 
an inference region from 4.46-4.55 MeV that is used to determine the 235U 
and 236U count numbers. 

3.5.7. Correction Factor 

For an experimental spectrum, the breakdown of counts in a region by isotope source is not 

known. However, if the simulation provides an accurate representation of the spectrum from 

a DES measurement, the ratio 

 (235 in 236)

(235 in inference)
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should be the same in experimental spectra as in simulated spectra. Then, since the numbers 

of 235U counts in the 236U and inference regions are known for the simulated spectrum and 

the number of 235U counts in the inference region is known for the experimental spectrum, 

the number of 235U counts in the 236U region can be determined. This can be subtracted from 

all counts in the 236U region to determine total 236U counts, which can be subtracted from all 

counts in the 235U region to determine total 235U counts and the correction factor is then 

complete.  
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Chapter 4 

SELF-CONSISTENCY AND SENSITIVITY RESULTS 

4.1. Overview 

With this modified ROI analysis method for DES data explained, it follows to confirm that it 

will be able to determine the isotopic composition of DES spectra. However, due to lack of 

access to experimentally measured spectra, simulated experimental spectra from Geant4 

will be analyzed using correction spectra, which will also be simulated using Geant4. This 

test will determine whether the modified ROI analysis method is missing any large, 

inaccurate assumptions. In addition, it is important to determine how dependent this ability 

is on the physical setup of the simulated experimental spectra being analyzed by using 

correction spectra with different detector dimensions than the simulated experimental 

spectra. 

4.2. Suitability of ROIs 

One of the most important assumptions of analyzing data from alpha-emitting uranium 

sources using DES is that the regions selected for each isotope contain most of the counts 

from that isotope. In high-count simulations, not capping the absorber leads to only about 

96% of counts from 234U being measured at energies within its region, as shown in Figure 

14, which not only decreases the accuracy of 234U mass determination, but also that of all 

other isotopes present, since the escaped counts are being measured in the regions of those 

isotopes, as can be seen in a comparison of Figure 13 and the figures in Appendix C. This 

means that using the 234U mass as the denominator for all mass ratios is not a viable option 

without an absorber cap. However, adding a cap of only 10 μm raises the proportion of 234U 

counts present in the appropriate energy region to more than 99.97%, which allows for 

accurate isotopic composition determination of samples by relying on 234U as the 

denominator for mass ratios. Increasing the cap to 50 μm does not show significant 

improvement in this metric compared to 10-μm cap. 
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Figure 13. ROI breakdown of counts by isotope. (Above) The spectrum in 
question, with labeled ROIs. This spectrum represents a measurement by an 
absorber with 50 μm of cap of a 20% enriched source. There are 10 million 
total counts in this spectrum, which at 1 Bq would take ~116 days to 
measure. (Below) A table of counts in each ROI by isotope, with both 
percentage of all counts in region and percentage of all counts of that isotope. 
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Figure 14. Normalized 234U ROI counts vs. absorber cap thickness. 
Uncertainties are smaller than the symbol size.  The percentage of 234U decays 
in the 234U ROI (4.8 – 4.9 MeV) is given for increasing absorber cap thickness. 
No noticeable improvement occurs in the resulting percentage between 10 
μm and 50 μm cap. 

4.3. Analyzing the Analysis Method 

4.3.1. Self-Consistency Test 

In order to ensure that the modified ROI analysis method is self-consistent, a test was 

performed to confirm that correction spectra can accurately determine the composition of 

simulated experimental spectra. These simulated experimental spectra contained 50,000 

counts each across all isotopes, which represents 14-hour measurements at 1 Bq. All 

absorbers were simulated with dimensions 1000 μm x 1000 μm x 100 μm, with absorber cap 

varying from 0 μm to 50 μm. Spectra with enrichments (235U percentages) of 0.02%, 1%, 

1.5%, 20%, and 97% were simulated. These spectra were then used to test the analysis 

method, with the same spectrum being used as the simulated experimental spectrum for 

which mass ratios were determined and for the correction spectrum. The results from this 

test for 1.5% and 20% enriched sources are shown in Figure 15, while the results from all 

source compositions are found in Appendix D. In addition, accuracy and precision from this 

test are shown Figure 16. Results of 235U/234U mass ratio determination from spectra from 

absorbers with greater than 10-μm absorber cap show agreement to within 0.25% in all 

spectral compositions except the 0.02% enriched source. Results of 236U/234U mass ratio 
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determination from spectra from absorbers with greater than 10-μm absorber cap show 

agreement to within 1% when the spectrum contains more than trace amounts of 236U. 

Results of 238U/234U mass ratio determination from spectra from absorbers with greater than 

10-μm absorber cap show agreement to within 2% when the spectrum contains more than 

trace amounts of 238U. The precision of these isotopic ratios is <4% for 235U/234U, <6% for 

236U/234U, and <2.5% for 238U/234U for spectra whose compositions contain more than trace 

amounts of all isotopes present. This does not change appreciably with capping as it is 

primarily driven by the low statistics of a 14-hour measurement. The reason for decreased 

accuracy at 0 μm and 5 μm cap thickness is the high Compton background present in the 234U 

trace, which adds to the counts in all ROIs, as demonstrated in Figure 17. 

 

Figure 15. Results of self-consistency check for Geant4 uranium analysis 
method. Each column represents the mass ratio of an isotope of uranium to 
234U. The x-axes represent cap thickness of absorbers, from 0 μm to 50 μm, 
and the y-axes represent mass ratio values. The error bars come from 
propagated statistical and systematic uncertainties in physical constants, 
being dominated by statistical contributions. The mass ratios come from 
analysis of simulated experimental spectra with the corrected 235U and 236U 
ROIs. These values are compared to the simulated composition, denoted by 
the green horizontal line. The green shaded region shows the uncertainty in 
mass ratios that a precise experimental measurement would be compared to. 
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Figure 16. Accuracy and precision of self-consistency test results. Isotopes 
whose percentage by activity are below 0.002% are removed as trace 
isotopes, as their accuracy and precision are worse than those isotopes that 
are present in higher quantities. 
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Figure 17. A spectrum simulated with no absorber cap. The high Compton 
background present in the 234U trace interferes with analysis. 

4.3.2. Introducing Systematic Uncertainty 

Because of variability in absorber dimension and source distribution, another tested quality 

of the modified ROI method was the sensitivity to physical setup. Instead of analyzing spectra 

with correction spectra simulated with an identical physical situation, spectra were 

simulated for identical enrichments but different absorber configurations than the spectra 

to be analyzed. Once again, the spectra to be analyzed were simulated with 50,000 total 

counts for enrichments of 0.02%, 1%, 1.5%, 20%, and 97%. However, the correction spectra 

were simulated with 10,000,000 total counts each, which can be done because the correction 

spectra need not have an experimentally plausible number of counts. In one case, the 

correction spectra were simulated with 50 μm absorber cap and in the other, they were 

simulated with 0 μm absorber cap. The results of the 1.5% and 20% enriched samples are 

shown in Figure 18 and Figure 19 and the full results are shown in Appendix E. The accuracies 

of these results are shown in Figure 20. 
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Figure 18. Results of analysis method assuming minimal escape. Correction 
spectra for this test used absorbers with 50 μm of absorber cap. Simulated 
experimental spectra varied in cap amounts, from 0 μm to 50 μm. 
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Figure 19. Results of analysis method assuming maximal escape. Correction 
spectra for this test used absorbers with 0 μm of absorber cap. Simulated 
experimental spectra varied in cap amounts, from 0 μm to 50 μm. 
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Figure 20. Accuracy and precision of sensitivity test results. Isotopes whose 
percentage by activity are below 0.002% are removed as trace isotopes, as 
their accuracy and precision are worse than those isotopes that are present 
in higher quantities. 
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Chapter 5 

CONCLUSION 

5.1. How Can We Use These Results? 

The results of this study indicate that the modified ROI method of analyzing DES uranium 

data can accurately determine the isotopic compositions of spectra simulated using Geant4 

to an average accuracy of <1% and an average precision of ~5%. This assumes absorbers 

have at least a 10-μm cap. Without this cap, the accuracy of the modified ROI method is above 

10% error for some spectra. As a result, the recommendation is to increase capping to 10 

μm. In addition, to improve precision, the recommendation is to increase count rate, since 

the current uncertainties are dominated by statistical contributions. 

5.2. What About Future Plans? 

5.2.1. Aluminum Absorbers 

At Los Alamos National Laboratory, aluminum absorbers are currently being explored due 

to aluminum’s much lower heat capacity than gold, allowing for potential improvements to 

energy resolution and mass loads.  However, the lower Z number of aluminum would also 

result in a lower stopping power, potentially increasing particle escapes. As a result, 

simulation of how problematic these escapes are can be used to optimally design this 

absorber type in two ways. One, this approach can be used to optimize the capping thickness 

necessary for aluminum. Two, simulations could be used to determine whether a gold or 

aluminum cap is preferable, dependent on whether the stopping power of gold or the lower 

heat capacity of aluminum is more beneficial. 

5.2.2. Detector Aspect Ratio Simulation Variety 

Only one detector shape and size has been simulated using Geant4, but no real detector has 

exactly that geometry. Simulating various detector dimensions could help to determine 

further how sensitive to detector geometry the modified ROI method is. 
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5.2.3. Randomization in Geant4 Simulation 

For all simulations presented in this work, the random seed was identical, resulting in no 

variation between simulations beyond geometry. These simulations should be recreated 

with different random seeds for the Geant4 simulations. 

5.2.4. Alternate Analysis Method 

As an alternate method for analyzing DES data, a library of Geant4 simulated spectra could 

be created, encompassing a wide range of detector and absorber geometries. These resulting 

spectra could then be used in a fitting process to determine the isotopic composition of 

experimental spectra. 

5.2.5. Plutonium Simulation 

This process of analyzing the effects of escape on spectral shape can also be used for 

plutonium sources. In order to analyze plutonium spectra, peak fitting techniques or a 

modified ROI method similar to the uranium method described here could be used for 

analyzing plutonium measurements. Alternatively, if the method of fitting spectra using a 

library of simulated spectra is successful, this method could also be employed to analyze 

plutonium measurements. 
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Appendix A 

COMPLETE GEANT4 INPUT FILE 

/control/verbose 0 
/run/verbose 1 
/event/verbose 0 
/tracking/verbose 0 
 
/TrueBq01/det/setAbsorberMate G4_Au 
/TrueBq01/det/setAbsorberThickness 100 um 
/TrueBq01/det/setAbsorberSide 1000 um 
 
/TrueBq01/det/setActivityThickness 0 um 
/TrueBq01/det/setActivitySide 900 um 
/TrueBq01/det/setActivityZOffset 0 mm 
 
/TrueBq01/det/setThetaMin 0 deg 
/TrueBq01/det/setThetaMax 180 deg 
 
/TrueBq01/det/setChipThickness 275 um 
/TrueBq01/det/setChipLength 5.0 mm 
/TrueBq01/det/setChipWidth 3.0 mm 
 
/process/em/lowestElectronEnergy 1 keV 
/run/initialize 
 
/gun/particle ion  
/gun/energy 0 MeV 
/TrueBq01/det/ParentOnly TRUE 
/process/had/rdm/setPhotoEvaporationFile 92 235 UserEvapData_z92.a235 
/process/had/rdm/setPhotoEvaporationFile 90 229 UserEvapData_z90.a229 
 
/gun/ion 94 240 
/analysis/setFileName Pu-240 
/analysis/h1/set 2 4000 5.200 5.280 MeV 
/run/beamOn 10000000 
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Appendix B 

DESSIMATE FULL CODE 

B.1. DESSIMATE.py 

import sys 
from PyQt5 import QtWidgets, QtCore 
from PyQt5.uic import loadUi 
 
import matplotlib 
matplotlib.use('Qt5Agg') 
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar 
import matplotlib.pyplot as plt 
plt.rcParams.update({'font.size': 22}) 
 
import numpy as np 
import pandas as pd 
import uncertainties 
from uncertainties.core import ufloat, ufloat_fromstr 
import seaborn as sns 
from sympy import sqrt, symbols 
 
# Local Functions and Classes 
from util import read_two_col_text_file, create_gaussian_output, create_isotopic_data_frame, 
get_counts_in_regions, get_isotopic_information_tables, get_mass_from_activity, get_activity_from_mass, 
upload_sim_spectrum 
from help import Ui_DESSIMATE_Help 
 
 
 
class Ui(QtWidgets.QMainWindow): 
    def __init__(self): 
        super(Ui, self).__init__() # Call the inherited classes __init__ method 
         
        # Load the .ui file and perform basic setup 
        loadUi('DESSIMATE.ui', self) 
        self.setWindowTitle("DESSIMATE") 
        self.addToolBar(NavigationToolbar(self.graph.canvas,self)) 
         
        # Connect functions to triggers in the UI 
        self.action_open.triggered.connect(self.open_file) 
        self.set_logarithmic.triggered.connect(lambda: self.set_axis_scale('log')) 
        self.set_linear.triggered.connect(lambda: self.set_axis_scale('linear')) 
        self.go_to_spectrum_tab.triggered.connect(lambda: self.switch_tabs(0)) 
        self.go_to_experimental_tab.triggered.connect(lambda: self.switch_tabs(1)) 
        self.update_detector_response_button.pressed.connect(self.update_graph) 
        self.scaling_toggle.triggered.connect(self.toggle_spectrum_scaling) 
        self.action_help.triggered.connect(self.load_help_file) 
        self.normalize_by_activity_button.pressed.connect(self.update_table_by_activity) 
        self.normalize_by_mass_button.pressed.connect(self.update_table_by_mass) 
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        self.get_counts_in_region.triggered.connect(self.determine_counts_in_region_by_isotope) 
        self.uranium_analysis_button.triggered.connect(self.uranium_analysis) 
        self.actionSave_Graph_Figure.triggered.connect(self.savefig_graph) 
         
        self.spectrum_one_field.textChanged.connect(self.upload_spectrum_one) 
        self.spectrum_two_field.textChanged.connect(self.upload_spectrum_two) 
        self.spectrum_three_field.textChanged.connect(self.upload_spectrum_three) 
        self.spectrum_four_field.textChanged.connect(self.upload_spectrum_four) 
        self.spectrum_five_field.textChanged.connect(self.upload_spectrum_five) 
        self.spectrum_six_field.textChanged.connect(self.upload_spectrum_six) 
         
        self.spectrum_one_clear.pressed.connect(self.clear_spectrum_one) 
        self.spectrum_two_clear.pressed.connect(self.clear_spectrum_two) 
        self.spectrum_three_clear.pressed.connect(self.clear_spectrum_three) 
        self.spectrum_four_clear.pressed.connect(self.clear_spectrum_four) 
        self.spectrum_five_clear.pressed.connect(self.clear_spectrum_five) 
        self.spectrum_six_clear.pressed.connect(self.clear_spectrum_six) 
         
        # Initialize global variables 
        self.energies = [] 
        self.total_raw_spectrum = [] 
        self.convolved_spectrum = [] 
        self.isotope_names = ['','','','','',''] 
        self.simulated_count_numbers = [0,0,0,0,0,0] 
        self.scale_spectra = False 
        self.plotting_palette = sns.color_palette(palette = 'tab20b') 
        self.plotting_colors = {0: np.array(self.plotting_palette[13]), 1: self.plotting_palette[9], 2: 
self.plotting_palette[5], 3: self.plotting_palette[1], 4: self.plotting_palette[17], 5: 'orange'} 
        self.isotopic_df = create_isotopic_data_frame() 
        self.length_of_measurement = 0. 
        self.graph.axes.set_yscale('log') 
        self.max_scaling_factor = 10 
        self.uranium_mode = False 
         
         
        ### TEMPORARY DICTIONARIES OF GENERIC ISOTOPIC INFORMATION 
        self.half_life_dict, self.mass_dict = get_isotopic_information_tables() 
         
        # Show the GUI 
        self.show() 
         
         
         
    def load_help_file(self): 
        # Opens a separate UI window containing information that guides a new user into using DESSIMATE 
        help_app = QtWidgets.QMainWindow() 
        help_ui = Ui_DESSIMATE_Help() 
        help_ui.setupUi(help_app) 
        help_app.show() 
        app.hide() 
         
                 
                 
    # Graph formatting functions      
    def set_axis_scale(self, scale_type): 
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        self.graph.axes.set_yscale(scale_type) 
        if scale_type == 'linear': 
            self.graph.axes.set_ylim(bottom=0) 
            self.max_scaling_factor = 1.35 
        if scale_type == 'log': 
            self.graph.axes.set_ylim(bottom=1) 
            self.max_scaling_factor = 10 
        self.update_graph() 
     
    def toggle_spectrum_scaling(self): 
        self.scale_spectra = not self.scale_spectra 
        self.update_graph() 
         
    def switch_tabs(self, tab_num): 
        self.tab_widget.setCurrentIndex(tab_num) 
 
 
    # Spectrum loading functions 
     
    def open_file(self): 
        # Determine which file should be opened and read its contents in as text 
        name = QtWidgets.QFileDialog.getOpenFileName(self, 'Open File') 
        self.upload_spectrum(event = name[0], slot_number = 0) 
         
    def upload_spectrum_one   (self, event): 
        if event[-4:] == '.out': 
            self.upload_spectrum(event = event, slot_number = 0) 
            self.update_graph() 
            self.spectrum_one_field.setText(str(self.isotopic_df['Maximum Counts'].iloc[-1]) + ' counts of ' + 
self.isotopic_df['Isotope'].iloc[-1]) 
            self.populate_activity_table() 
             
    def upload_spectrum_two   (self, event): 
        if event[-4:] == '.out': 
            self.upload_spectrum(event = event, slot_number = 1) 
            self.update_graph() 
            self.spectrum_two_field.setText(str(self.isotopic_df['Maximum Counts'].iloc[-1]) + ' counts of ' + 
self.isotopic_df['Isotope'].iloc[-1]) 
            self.populate_activity_table() 
             
    def upload_spectrum_three (self, event): 
        if event[-4:] == '.out': 
            self.upload_spectrum(event = event, slot_number = 2) 
            self.update_graph() 
            self.spectrum_three_field.setText(str(self.isotopic_df['Maximum Counts'].iloc[-1]) + ' counts of ' + 
self.isotopic_df['Isotope'].iloc[-1]) 
            self.populate_activity_table() 
             
    def upload_spectrum_four  (self, event): 
        if event[-4:] == '.out': 
            self.upload_spectrum(event = event, slot_number = 3) 
            self.update_graph() 
            self.spectrum_four_field.setText(str(self.isotopic_df['Maximum Counts'].iloc[-1]) + ' counts of ' + 
self.isotopic_df['Isotope'].iloc[-1]) 
            self.populate_activity_table() 
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    def upload_spectrum_five  (self, event): 
        if event[-4:] == '.out': 
            self.upload_spectrum(event = event, slot_number = 4) 
            self.update_graph() 
            self.spectrum_five_field.setText(str(self.isotopic_df['Maximum Counts'].iloc[-1]) + ' counts of ' + 
self.isotopic_df['Isotope'].iloc[-1]) 
            self.populate_activity_table() 
             
    def upload_spectrum_six   (self, event): 
        if event[-4:] == '.out': 
            self.upload_spectrum(event = event, slot_number = 5) 
            self.update_graph() 
            self.spectrum_six_field.setText(str(self.isotopic_df['Maximum Counts'].iloc[-1]) + ' counts of ' + 
self.isotopic_df['Isotope'].iloc[-1]) 
            self.populate_activity_table() 
             
     
     
    def upload_spectrum(self, event, slot_number): 
        """ 
        This function is called each time a new spectrum is uploaded into DESSIMATE. It reads the contents of the 
file and parses 
        several pieces of information: the isotope name, number of simulated counts, and actual energy spectrum 
of those simulated counts. 
        It then pads this spectrum with 75 bins above the maximum energy of the simulation to allow for future 
detector broadening and 
        stores the total raw spectrum in a global array of each raw spectrum. 
 
        Parameters 
        ---------- 
        event : string 
            The filepath of the new spectrum that has been input into DESSIMATE. 
        slot_number : int 
            The field number that the spectrum was input into. 
 
        Returns 
        ------- 
        None. 
 
        """ 
        if event[-4:] == '.out': 
             
            # Read the dropped file's contents in as text 
            with open(event, 'r') as file: 
                file_text = file.readlines() 
             
            # Parse the text by line, looking for keywords describing the spectrum 
            for line_num, line in enumerate(file_text): 
                if line[0] == '#': 
                    # Found a keyword 
                    var_name = line.split('\t')[0].split('#')[1] 
                    var_value = line.split('\t')[1].split('\n')[0] 
                    if var_name.split(' ')[0] == 'E_l': 
                        # Read in spectrum file 
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                        spectrum = read_two_col_text_file(file_text[line_num+1:]) 
                        spectrum = [spectrum[0][1:], spectrum[1][1:]] 
                         
                        if len(self.energies) != 0: 
                             
                            # Check to make sure new energy array is aligned with old energy array 
                            new_intercept, old_intercept = self.check_if_valid_binning(spectrum) 
                             
                            # Pad end of spectrum with zeroes 
                            highest_old_energy = spectrum[0][-1] 
                            padding_index = np.arange(1,75) 
                            new_energies = spectrum[0] 
                            new_energies_padded = np.append(new_energies, 
highest_old_energy+(padding_index*self.energy_step_size)) 
                             
                            # Create new energies array for all of the spectra together 
                            spectrum = self.pad_spectra(spectrum, new_intercept, old_intercept, new_energies_padded[-1], 
self.energies[-1]) 
                         
                        else: 
                             
                            self.energy_step_size = spectrum[0][1] - spectrum[0][0] 
                            padding_index = np.arange(1, 75) 
                            highest_old_energy = spectrum[0][-1] 
                            self.energies = np.append(spectrum[0], highest_old_energy + (padding_index * 
self.energy_step_size)) 
                     
                    elif var_name == 'partle': 
                        isotope_name = var_value 
                        self.isotope_names[slot_number] = isotope_name 
                     
                    elif var_name == 'n_done': 
                        num_max_counts = int(float(var_value)) 
             
            # Create new row for data frame and append to the full isotopic data frame 
            new_row = pd.DataFrame(data = {'Isotope': isotope_name, 'Maximum Counts': num_max_counts, 'Time 
Taken for Maximum Counts (in seconds)': 0., 'Measured Counts': num_max_counts, 'Total Atoms': 0., 'Activity 
%': 0., 'Activity (Bq)': 0., \ 
                                           'Mass (pg)': 0., 'Mass %': 0., 'Percentage Counts Measured': 1, 'Raw Spectrum': 
[np.append(spectrum[1], np.zeros(74))], 'Unconvolved Spectrum': [[]], 'Convolved Spectrum': [[]], \ 
                                           'Plotting Color': [self.plotting_colors[slot_number]]}, index = 
[len(self.isotopic_df['Isotope'])], dtype = object) 
             
            self.isotopic_df = pd.concat([self.isotopic_df, new_row]) 
             
             
     
    def check_if_valid_binning(self, spectrum): 
         
        new_slope = round(spectrum[0][1] - spectrum[0][0], 10) 
        old_slope = round(self.energies[1] - self.energies[0], 10) 
         
        if new_slope != old_slope: 
            raise Exception(f'The bin width of this spectrum is not the same as that of the other spectra. The bin 
width of this spectrum was {new_slope} and the bin width of the other spectra is {old_slope}.') 
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            return 0 
         
        self.energy_step_size = new_slope 
         
        new_intercept = spectrum[0][0] 
        old_intercept = self.energies[0] 
         
        slope_differences = round(abs(new_intercept - old_intercept), 10) % self.energy_step_size # Determines if 
the intercepts are separated by an integer multiple of the slope 
     
        if slope_differences > 0.0000001 and abs(slope_differences - self.energy_step_size) > 0.0000001: 
            # The energy bins are not compatible; please input a new spectrum instead 
            raise Exception('The bins of this spectrum are offset from the other spectra by a non-integer multiple of 
the bin width and are therefore incompatible. This spectrum was not added to the plotted total. Please try a 
different spectrum.') 
            return 0 
         
        return new_intercept, old_intercept 
     
     
     
    def pad_spectra(self, spectrum, new_intercept, old_intercept, highest_new_energy, highest_old_energy): 
         
        low_energy = min(old_intercept, new_intercept) 
        high_energy = max(highest_old_energy, highest_new_energy) 
         
        if old_intercept > new_intercept: 
            num_paddings = (old_intercept - new_intercept) / self.energy_step_size 
            padding_index = np.zeros(round(num_paddings)) 
            for row_num in range(len(self.isotopic_df['Isotope'])): 
                self.isotopic_df.loc[row_num, 'Raw Spectrum'] = np.append(padding_index, 
self.isotopic_df.loc[row_num, 'Raw Spectrum']) 
                 
        if new_intercept > old_intercept: 
            num_paddings = (new_intercept - old_intercept) / self.energy_step_size 
            padding_index = np.zeros(round(num_paddings)) 
            spectrum[1] = np.append(padding_index, spectrum[1]) 
             
        if round(highest_new_energy, 10) > round(highest_old_energy, 10): 
            num_paddings = (highest_new_energy - highest_old_energy) / self.energy_step_size 
            padding_index = np.zeros(round(num_paddings)) 
            for row_num in range(len(self.isotopic_df['Isotope'])): 
                appended = np.append(self.isotopic_df.loc[row_num, 'Raw Spectrum'], padding_index) 
                self.isotopic_df.loc[[row_num], 'Raw Spectrum'] = pd.Series([appended], index = [row_num]) 
         
        if round(highest_old_energy, 10) > round(highest_new_energy, 10): 
            num_paddings = (highest_old_energy - highest_new_energy) / self.energy_step_size 
            padding_index = np.zeros(round(num_paddings)) 
            spectrum[1] = np.append(spectrum[1], padding_index) 
         
        self.energies = np.arange(low_energy, round(round(high_energy, 10) + round(self.energy_step_size, 10), 
10), self.energy_step_size) 
         
        return spectrum 
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    def update_graph(self): 
        """ 
        This function is called whenever something changes what should be graphed in DESSIMATE, most notably 
each time a new spectrum is uploaded or an existing 
        spectrum is cleared from DESSIMATE. It begins by resetting the graph in order to prevent leaving previous 
removed lines in the plot. It then retrieves 
        pertinent information such as the detector response size and energy step size of the spectra which will be 
used to label the plot and accurately portray 
        the spectra. It then plots each spectrum separately and the total raw spectrum (with the ability to scale it 
to a level that is the same as the eventual 
        convolved spectrum) as well. 
 
        Returns 
        ------- 
        None. 
 
        """ 
        # Remove old plots of the total spectrum before convolution 
        for line in self.graph.axes.lines[::-1]: # Loops backwards to avoid removing an index and changing an index 
while looping 
            if 'Raw Spectrum' in line.get_label(): line.remove() 
         
        # Read in detector FWHM and energy step size 
        self.detector_response_size = float(self.detector_response_size_user_input_field.text()) 
        self.energy_step_size = self.energies[2] - self.energies[1] 
         
        # Graph each spectrum before convolution, scaling if necessary 
        if isinstance(self.isotopic_df.loc[0, 'Measured Counts'], uncertainties.UFloat): 
            self.isotopic_df['Percentage Counts Measured'] = [self.isotopic_df.loc[row_num, 'Measured 
Counts'].nominal_value / self.isotopic_df.loc[row_num, 'Maximum Counts'] for row_num in 
range(len(self.isotopic_df['Isotope']))] 
        else: 
            self.isotopic_df['Percentage Counts Measured'] = self.isotopic_df['Measured Counts'] / 
self.isotopic_df['Maximum Counts'] 
             
        self.isotopic_df['Unconvolved Spectrum'] = self.isotopic_df['Raw Spectrum'] * self.isotopic_df['Percentage 
Counts Measured'] 
     
                 
        # Draw uranium regions if applicable 
        if self.uranium_mode: 
            self.graph.axes.axvspan(self.measured_counts_df['ROI Bounds'][0][0], self.measured_counts_df['ROI 
Bounds'][0][1], color = self.plotting_palette[14], alpha = 0.5) 
            self.graph.axes.axvspan(self.measured_counts_df['ROI Bounds'][1][0], self.measured_counts_df['ROI 
Bounds'][1][1], color = self.plotting_palette[10], alpha = 0.5) 
            self.graph.axes.axvspan(self.measured_counts_df['ROI Bounds'][2][0], self.measured_counts_df['ROI 
Bounds'][2][1], color = self.plotting_palette[6], alpha = 0.5) 
            self.graph.axes.axvspan(self.measured_counts_df['ROI Bounds'][3][0], self.measured_counts_df['ROI 
Bounds'][3][1], color = self.plotting_palette[2], alpha = 0.5) 
            self.graph.axes.axvspan(self.measured_counts_df['ROI Bounds'][4][0], self.measured_counts_df['ROI 
Bounds'][4][1], color = self.plotting_palette[9], alpha = 0.5) 
         
        # Format graph 
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        self.graph.axes.set_xlabel('Energy (MeV)') 
        self.graph.axes.set_ylabel(f'Counts per {np.round((self.energy_step_size)*1000, decimals = 4)} keV bin') 
        self.graph.canvas.draw() 
         
        self.include_detector_response() 
         
         
         
    def include_detector_response(self): 
        """ 
        This function accounts for the effect of a detector and how its spectra appear differently from purely 
simulated data due to a broadening effect that results from 
        its imperfections. The way this effect is mimicked is through a convolution with a Gaussian curve, which is 
the reason for the padding of each raw spectrum previously 
        in the process of inputting a spectrum. In order to do this, a Gaussian curve is formed using an external 
function, given amplitude, sigma, and center (each determined 
        primarily from the value of the detector response size, which can be manually changed by the user; 
changing this will automatically replot this convolved spectrum). 
 
        Returns 
        ------- 
        None. 
 
        """ 
         
        # Sum each input spectrum and define as total raw spectrum 
        self.total_raw_spectrum = sum(self.isotopic_df['Unconvolved Spectrum']) 
         
        # Check whether there is a spectrum imported yet 
        if sum(self.total_raw_spectrum) == 0: 
            raise Exception('There is no spectrum to correct. Please input a file before adjusting the contents of this 
text box.') 
            return 0 
         
        # Remove any previous broadened spectra lines and labels from the graph and legend 
        for line in self.graph.axes.lines[::-1]: # Loops backwards to avoid removing an index and changing all future 
indices 
            if line.get_label() in ['Convolved Spectrum']: line.remove() 
 
        if self.detector_response_size == 0: 
            # There is no detector response included; return unconvolved spectrum 
            self.isotopic_df['Convolved Spectrum'] = self.isotopic_df['Unconvolved Spectrum'] 
         
        else: 
            # Create the inputs for the Gaussian response curve 
            gaussian_inputs = np.arange(0, (len(self.total_raw_spectrum)-1)*self.energy_step_size, 
self.energy_step_size) - ((len(self.total_raw_spectrum)-1)/2)*self.energy_step_size 
     
            # Define parameters for outputs and create outputs for the Gaussian response curve 
            sigma = self.detector_response_size/2.355 
            amplitude = 1./(sigma*np.sqrt(2*np.pi)) 
            center = 0 
            gaussian_func = create_gaussian_output(amplitude, center, sigma, gaussian_inputs) * 
self.energy_step_size 
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            # Convolve and plot convolved spectrum 
            convolved_spectra = [] 
            for spectrum_number in range(len(self.isotopic_df['Isotope'])): 
                convolved_spectrum = np.convolve(self.isotopic_df.loc[spectrum_number, 'Unconvolved Spectrum'], 
gaussian_func, mode = 'same') 
                convolved_spectra.append(convolved_spectrum) 
            self.isotopic_df['Convolved Spectrum'] = convolved_spectra 
         
        self.convolved_spectrum = sum(self.isotopic_df['Convolved Spectrum']) 
         
        for row_num in range(len(self.isotopic_df['Isotope'])): 
            if self.scale_spectra and not self.detector_response_size == 0: 
                self.graph.axes.plot(self.energies, self.isotopic_df.loc[row_num, 'Unconvolved 
Spectrum']*(self.energy_step_size/self.detector_response_size),\ 
                                     label=f'{self.isotopic_df.loc[row_num, "Isotope"]} Raw 
Spectrum',color=self.isotopic_df.loc[row_num, 'Plotting Color']) 
            else: 
                self.graph.axes.plot(self.energies, self.isotopic_df.loc[row_num, 'Unconvolved Spectrum'], label = 
f'{self.isotopic_df.loc[row_num, "Isotope"]} Raw Spectrum', color = self.isotopic_df.loc[row_num, 'Plotting 
Color']) 
             
            self.graph.axes.plot(self.energies, self.isotopic_df.loc[row_num, 'Convolved Spectrum'], label = 
f'{self.isotopic_df.loc[row_num, "Isotope"]} Raw Spectrum', color = self.isotopic_df.loc[row_num, 'Plotting 
Color'], linestyle = ':') 
             
        self.graph.axes.plot(self.energies, self.convolved_spectrum, label = 'Convolved Spectrum', color = 'black') 
        if self.scale_spectra and not self.detector_response_size == 0: 
            # Important note: self.max_scaling_factor is set to 1.25 if the graph is linear and 10 if the graph is 
logarithmic 
            self.graph.axes.set_ylim(1, 
max(self.total_raw_spectrum)*self.energy_step_size/self.detector_response_size*self.max_scaling_factor) 
        else: 
            self.graph.axes.set_ylim(1, max(self.total_raw_spectrum)*self.max_scaling_factor) 
        self.graph.axes.legend(fontsize = 15) 
        self.graph.canvas.draw() 
         
     
     
    def clear_spectrum_one(self): 
        field_text = self.spectrum_one_field.text() 
        row_number = self.find_row_number(field_text) 
        self.spectrum_one_field.setText(' ') 
        self.clear_spectrum(row_num = row_number, spectrum_num = 0) 
     
    def clear_spectrum_two(self): 
        field_text = self.spectrum_two_field.text() 
        row_number = self.find_row_number(field_text) 
        self.spectrum_two_field.setText(' ') 
        self.clear_spectrum(row_num = row_number, spectrum_num = 1) 
     
    def clear_spectrum_three(self): 
        field_text = self.spectrum_three_field.text() 
        row_number = self.find_row_number(field_text) 
        self.spectrum_three_field.setText(' ') 
        self.clear_spectrum(row_num = row_number, spectrum_num = 2) 
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    def clear_spectrum_four(self): 
        field_text = self.spectrum_four_field.text() 
        row_number = self.find_row_number(field_text) 
        self.spectrum_four_field.setText(' ') 
        self.clear_spectrum(row_num = row_number, spectrum_num = 3) 
         
    def clear_spectrum_five(self): 
        field_text = self.spectrum_five_field.text() 
        row_number = self.find_row_number(field_text) 
        self.spectrum_five_field.setText(' ') 
        self.clear_spectrum(row_num = row_number, spectrum_num = 4) 
         
    def clear_spectrum_six(self): 
        field_text = self.spectrum_six_field.text() 
        row_number = self.find_row_number(field_text) 
        self.spectrum_six_field.setText(' ') 
        self.clear_spectrum(row_num = row_number, spectrum_num = 5) 
         
    def find_row_number(self, field_text): 
        isotope_name = field_text.split()[3] 
        row_number = np.where(self.isotopic_df['Isotope'] == isotope_name)[0][0] 
        return row_number 
         
    def clear_spectrum(self, row_num, spectrum_num): 
        # Removes all global variables connected to a given spectrum when it is removed from DESSIMATE 
        self.isotopic_df = self.isotopic_df.drop(labels = row_num, axis = 0) 
        self.isotopic_df.reset_index(drop = True, inplace = True) 
        self.populate_activity_table() 
         
        self.update_graph() 
         
     
     
    def populate_activity_table(self): 
        """ 
        This function calculates the isotopic composition of a given sample and displays the results of this 
calculation in a table. The two main things it calculates 
        are the percentage composition of each isotope by activity and the percentage composition of each isotope 
by mass. In addition to automatically calculating both 
        of these things each time a spectrum is uploaded or removed, the user will be able to manually change the 
activity percentage of any isotope in the sample and 
        see the effect of such a change on the mass percentage of the sample by isotope.  
 
        Returns 
        ------- 
        None. 
 
        """ 
        if sum(self.total_raw_spectrum) == 0: 
            raise Exception('There is no spectrum to analyze. Please input a file before adjusting the contents of this 
table.') 
            return 0 
         
        self.isotopic_composition_table.clear() 
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        total_num_counts = sum(self.isotopic_df['Maximum Counts']) 
         
        self.isotopic_df['Activity %'] = self.isotopic_df['Maximum Counts']/total_num_counts 
        self.isotopic_df['Activity (Bq)'] = self.isotopic_df['Activity %'] * float(self.total_activity_number.text()) 
         
        self.isotopic_df['Time Taken for Maximum Counts (in seconds)'] = 
total_num_counts/float(self.total_activity_number.text()) 
         
        self.isotopic_df['Total Atoms'] = self.isotopic_df['Activity (Bq)']*[self.half_life_dict[isotope_name] for 
isotope_name in self.isotopic_df['Isotope']]/np.log(2) 
        self.isotopic_df['Mass (pg)'] = self.isotopic_df['Total Atoms']*[self.mass_dict[isotope_name]*1000000000 
for isotope_name in self.isotopic_df['Isotope']]       
        total_mass = sum(self.isotopic_df['Mass (pg)']) 
         
        self.isotopic_df['Mass %'] = self.isotopic_df['Mass (pg)']/total_mass 
         
        column_names = ['Isotope', 'Activity %', 'Activity (Bq)', 'Mass %', 'Mass (pg)'] 
        self.isotopic_composition_table.setHorizontalHeaderLabels(column_names) 
         
        for column_num, column_name in enumerate(column_names): 
            for row_num, cell_value in enumerate(self.isotopic_df[column_name]): 
                 
                table_item = QtWidgets.QTableWidgetItem() 
                if type(cell_value) == str: 
                    table_item.setText(cell_value) 
                else: 
                    if column_name == 'Mass %' or column_name == 'Activity %': 
                        table_item.setText(f'{100*cell_value:.3f}%') 
                    else: 
                        table_item.setText(f'{cell_value:.3f}') 
                self.isotopic_composition_table.setItem(row_num, column_num, table_item) 
         
        self.total_mass_number.setText(f'{total_mass:.3f}') 
     
     
     
    def determine_counts_in_region_by_isotope(self, energy_region_unconvolved_min = 4.5727, 
energy_region_unconvolved_max = 4.573, energy_region_convolved_min = 4.55, energy_region_convolved_max 
= 4.59): 
        """ 
        This function, given an energy region and several Geant output files, determines the number of counts due 
to each isotope in that region. 
        From there, it prints each of these numbers and also the percentages of the total for each isotope. 
 
        Returns 
        ------- 
        None. 
 
        """ 
         
        if len(self.isotopic_df['Isotope']) == 0: 
            raise Exception('No spectra found; please input a spectrum first.') 
            return 0 
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        self.counts_dict = {'Isotope': [], 'Variable': [], 'Expression': [], 'Convolved Counts': [], 'Convolved 
Uncertainty': [], 'Convolved Percentage': [], \ 
                          'Unconvolved Counts': [], 'Unconvolved Uncertainty': [], 'Unconvolved Percentage': []} 
        self.counts_df = pd.DataFrame(data = self.counts_dict) 
         
        self.counts_df['Isotope'] = self.isotopic_df['Isotope'] 
         
        self.counts_df['Unconvolved Counts'], self.counts_df['Convolved Counts'] = 
get_counts_in_regions(self.energies, self.isotopic_df['Unconvolved Spectrum'], self.isotopic_df['Convolved 
Spectrum'], \ 
                                                                             [energy_region_unconvolved_min, energy_region_unconvolved_max], 
[energy_region_convolved_min, energy_region_convolved_max]) 
         
        self.counts_df['Unconvolved Uncertainty'] = [np.sqrt(cts) for cts in self.counts_df['Unconvolved Counts']] 
        self.counts_df['Convolved Uncertainty'] = [np.sqrt(cts) for cts in self.counts_df['Convolved Counts']] 
         
        # Prepare a string of each isotope name, separated by spaces, for creating variables 
        symbols_string = '' 
        for isotope_num, isotope_name in enumerate(self.isotopic_df['Isotope']): 
            symbols_string += isotope_name 
            if isotope_num < (len(self.isotopic_df['Isotope']) - 1): symbols_string += ' ' 
             
         
        self.counts_df['Variable'] = symbols(symbols_string) # Define variables for each isotope 
         
        # Create lambda function to create an expression for the percentage of counts 
        create_expression = lambda x: x / (sum(self.counts_df['Variable'])) 
        self.counts_df['Expression'] = create_expression(self.counts_df['Variable']) 
         
        self.propagate_uncertainties() 
         
        num_counts_convolved = [ufloat(i, np.sqrt(i)) for i in self.counts_df['Convolved Counts']] 
         
        #percentage_counts_convolved = [i / sum(num_counts_convolved) for i in num_counts_convolved] 
         
        #for i in range(len(self.isotopic_df['Isotope'])): 
         #   print(f'Number of counts of {self.isotopic_df.loc[i, "Isotope"]} in convolved region: 
{num_counts_convolved[i]}.') 
          #  print(f'Percentage of counts of {self.isotopic_df.loc[i, "Isotope"]} in convolved region: 
{percentage_counts_convolved[i]:0.3f}%.') 
           # print() 
             
             
     
    def propagate_uncertainties(self): 
         
        convolved_uncertainties = [] 
        unconvolved_uncertainties = [] 
         
        for expression in self.counts_df['Expression']: 
             
            # Determine the uncertainty in the expression for the given values 
            squared_total_convolved_unc = 0 
            squared_total_unconvolved_unc = 0 
             



61 
 

            # Loop through each variable to add the uncertainty in that variable squared times the derivative of the 
function squared 
            for variable, unconvolved_individual_unc, convolved_individual_unc in zip(self.counts_df['Variable'], 
self.counts_df['Unconvolved Uncertainty'], self.counts_df['Convolved Uncertainty']): 
                derivative_convolved = expression.diff(variable) 
                derivative_unconvolved = expression.diff(variable) 
                 
                expression_convolved = expression 
                expression_unconvolved = expression 
                 
                # Loop through each variable to substitute each value into the derivative 
                for variable, unconvolved_counts, convolved_counts in zip(self.counts_df['Variable'], 
self.counts_df['Unconvolved Counts'], self.counts_df['Convolved Counts']): 
                    derivative_convolved = derivative_convolved.subs(variable, convolved_counts) 
                    derivative_unconvolved = derivative_unconvolved.subs(variable, unconvolved_counts) 
                     
                    expression_convolved = expression_convolved.subs(variable, convolved_counts) 
                    expression_unconvolved = expression_unconvolved.subs(variable, unconvolved_counts) 
                 
                # Add the value squared times the derivative squared 
                squared_total_convolved_unc += ((convolved_individual_unc ** 2) * (derivative_convolved ** 2)) 
                squared_total_unconvolved_unc += ((unconvolved_individual_unc ** 2) * (derivative_unconvolved ** 
2)) 
                 
            total_convolved_uncertainty = sqrt(squared_total_convolved_unc) 
            total_unconvolved_uncertainty = sqrt(squared_total_unconvolved_unc) 
             
            convolved_uncertainties.append(ufloat(expression_convolved, total_convolved_uncertainty)) 
            unconvolved_uncertainties.append(ufloat(expression_unconvolved, total_unconvolved_uncertainty)) 
         
        self.counts_df['Convolved Percentage'] = convolved_uncertainties 
        self.counts_df['Unconvolved Percentage'] = unconvolved_uncertainties 
                 
     
     
    def update_table_by_activity(self, read_table = True): 
        """ 
        This function reads the user-input activity percentages for the isotopes present in the current sample 
        and determines from those the mass percentages of the sample by isotope, then updates the isotopic 
        information table in DESSIMATE and scales the simulated spectrum accordingly. 
         
        Returns 
        ------- 
        None. 
         
        """ 
         
        if sum(self.total_raw_spectrum) == 0: 
            raise Exception('There is no spectrum to analyze. Please input a file before attempting this function.') 
            return 0 
         
        # Current known things are isotopic nuclear data, maximum counts possible for each isotope, 
        # and activities of each isotope. Read these in from the table now. 
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        if read_table: self.isotopic_df['Activity %'] = [float(self.isotopic_composition_table.item(row_num, 
1).text().replace('%', '')) for row_num in range(len(self.isotopic_df['Isotope']))] 
         
        half_lives = [] 
        atomic_masses = [] 
        for isotope_name in self.isotopic_df['Isotope']: 
             
            half_life = self.half_life_dict[isotope_name] 
            atomic_mass = self.mass_dict[isotope_name] 
             
            half_lives.append(half_life) 
            atomic_masses.append(atomic_mass) 
         
        self.isotopic_df['Activity (Bq'], self.isotopic_df['Time Taken for Maximum Counts (in seconds)'], 
self.length_of_measurement, self.isotopic_df['Measured Counts'], \ 
            self.isotopic_df['Total Atoms'], self.isotopic_df['Mass (pg)'], total_mass, self.isotopic_df['Mass %'] = 
get_mass_from_activity(self.isotopic_df['Activity %'], \ 
            float(self.total_activity_number.text()), self.isotopic_df['Maximum Counts'], half_lives, atomic_masses) 
         
        # Set the length of measurement to the nearest lower integer, then update the text box displaying this 
        self.length_of_measurement_field.setText(str(int(self.length_of_measurement.nominal_value))) 
         
        # Fill out table with newly calculated values 
        column_names = ['Isotope', 'Activity %', 'Activity (Bq)', 'Mass %', 'Mass (pg)'] 
        self.isotopic_composition_table.setHorizontalHeaderLabels(column_names) 
         
        for column_num, column_name in enumerate(column_names): 
            for row_num, cell_value in enumerate(self.isotopic_df[column_name]): 
                 
                table_item = QtWidgets.QTableWidgetItem() 
                if type(cell_value) == str: 
                    table_item.setText(cell_value) 
                else: 
                    if column_name == 'Mass %' or column_name == 'Activity %': 
                        table_item.setText(f'{100*cell_value:.3f}%') 
                    else: 
                        table_item.setText(f'{cell_value:.3f}') 
                self.isotopic_composition_table.setItem(row_num, column_num, table_item) 
         
        self.total_mass_number.setText(f'{total_mass:.3f}') 
         
        # Update spectrum with new isotopic information 
        self.update_graph() 
     
     
     
    def update_table_by_mass(self): 
        """ 
        This function reads the user-input mass percentages for the isotopes present in the current sample 
        and determines from those the activity percentages of the sample by isotope, then update the isotopic 
        information table in DESSIMATE and scales the simulated spectrum accordingly. 
         
        Returns 
        ------- 
        None. 
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        """ 
         
        if sum(self.total_raw_spectrum) == 0: 
            raise Exception('There is no spectrum to analyze. Please input a file before attempting this function.') 
            return 0 
         
        # Current known things are isotopic nuclear data, maximum counts possible for each isotope, 
        # and masses of each isotope. Read thes in from the table now. 
         
        self.isotopic_df['Mass %'] = [float(self.isotopic_composition_table.item(row_num, 3).text().replace('%', '')) 
for row_num in range(len(self.isotopic_df['Isotope']))] 
         
        half_lives = [] 
        atomic_masses = [] 
        for isotope_name in self.isotopic_df['Isotope']: 
             
            half_life = self.half_life_dict[isotope_name] 
            atomic_mass = self.mass_dict[isotope_name] 
             
            half_lives.append(half_life) 
            atomic_masses.append(atomic_mass) 
         
        self.isotopic_df['Mass (pg)'], self.isotopic_df['Total Atoms'], self.isotopic_df['Activity (Bq)'], total_activity, 
self.isotopic_df['Activity %'], self.isotopic_df['Time Taken for Maximum Counts (in seconds)'], \ 
        self.length_of_measurement, self.isotopic_df['Measured Counts'] = 
get_activity_from_mass(self.isotopic_df['Mass %'], float(self.total_mass_number.text()), 
self.isotopic_df['Maximum Counts'], half_lives, atomic_masses) 
         
        # Set the length of measurement to the nearest lower integer, then update the text box displaying this 
        self.length_of_measurement_field.setText(str(int(self.length_of_measurement.nominal_value))) 
         
        # Fill out table with newly calculated values 
        column_names = ['Isotope', 'Activity %', 'Activity (Bq)', 'Mass %', 'Mass (pg)'] 
        self.isotopic_composition_table.setHorizontalHeaderLabels(column_names) 
         
        for column_num, column_name in enumerate(column_names): 
            for row_num, cell_value in enumerate(self.isotopic_df[column_name]): 
                 
                table_item = QtWidgets.QTableWidgetItem() 
                if type(cell_value) == str: 
                    table_item.setText(cell_value) 
                else: 
                    if column_name == 'Mass %' or column_name == 'Activity %': 
                        table_item.setText(f'{100*cell_value:.3f}%') 
                    else: 
                        table_item.setText(f'{cell_value:.3f}') 
                self.isotopic_composition_table.setItem(row_num, column_num, table_item) 
         
        self.total_activity_number.setText(f'{total_activity:.3f}') 
         
        # Update spectrum with new isotopic information 
        self.update_graph() 
         
         



64 
 

         
    def uranium_analysis(self): 
             
        self.default_uranium_rois() 
        self.determine_uranium_counts() 
        self.perform_correction_factor() 
        self.determine_mass_ratios() 
        self.switch_tabs(1) 
        #self.save_results() 
        self.update_graph() 
         
         
             
    def default_uranium_rois(self): 
             
        if sum(self.total_raw_spectrum) == 0: 
            raise Exception('There is no spectrum to analyze. Please input a file before attempting to analyze 
something.') 
            return 0 
             
        self.uranium_mode = True 
         
        measured_counts_dict = {'Isotope': ['U234', 'U235', 'U236', 'U238', 'U235inf'], 'ROI Bounds': [[4.8, 4.9], 
[4.285, 4.7], [4.56, 4.585], [4.255, 4.285], [4.46, 4.55]],\ 
                                'Counts in ROI': [0, 0, 0, 0, 0], 'Total Counts': [0, 0, 0, 0, 0], 'Mass Percent': [0, 0, 0, 0, 0]} 
             
        self.measured_counts_df = pd.DataFrame(data = measured_counts_dict, dtype = object) 
         
         
         
    def determine_uranium_counts(self): 
         
        for row_num in range(len(self.measured_counts_df['Isotope'])): 
             
            x, counts = get_counts_in_regions(self.energies, self.isotopic_df['Unconvolved Spectrum'], 
self.isotopic_df['Convolved Spectrum'], self.measured_counts_df.loc[row_num, 'ROI Bounds'], 
self.measured_counts_df.loc[row_num, 'ROI Bounds']) 
            x, test_cts = get_counts_in_regions(self.energies, self.isotopic_df['Unconvolved Spectrum'], 
self.isotopic_df['Convolved Spectrum'], [4, 4.2], [4, 4.2]) 
            #print(test_cts) 
             
            #for row_num_2 in range(len(self.measured_counts_df['Isotope'][:-1])): 
                #print(f'Number of {self.measured_counts_df.loc[row_num_2, "Isotope"]} counts in 
{self.measured_counts_df.loc[row_num, "Isotope"]} ROI: {counts[row_num_2]}.') 
            #print() 
             
            self.measured_counts_df.loc[row_num, 'Counts in ROI'] = ufloat(sum(counts), np.sqrt(sum(counts))) 
             
             
             
    def perform_correction_factor(self): 
         
        if not self.isotopic_df['Isotope'].str.contains('U235').any(): 
            print('A correction factor cannot be performed without a U235 spectrum present. Please input a U235 
file before attempting to perform a correction factor.') 
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            self.measured_counts_df['Total Counts'] = self.measured_counts_df['Counts in ROI'] 
            return 0 
         
        self.measured_counts_df.loc[0, 'Total Counts'] = self.measured_counts_df.loc[0, 'Counts in ROI'] 
        self.measured_counts_df.loc[3, 'Total Counts'] = self.measured_counts_df.loc[3, 'Counts in ROI'] 
         
        # We need to determine three things: 
            # The number of simulated counts of U235 in the U236 region 
            # The number of simulated counts of U235 in the inf. region 
            # The number of "experimental" counts of U235 in the inf. region 
         
        crm_num = '970' 
        cap_amt = '00' 
        spec_234 = 
f'capping_dependence/simulations_to_analyze_with/{cap_amt}_um_CRMU{crm_num}_U234_h1_0.out' 
        spec_235 = 
f'capping_dependence/simulations_to_analyze_with/{cap_amt}_um_CRMU{crm_num}_U235_h1_0.out' 
        spec_236 = 
f'capping_dependence/simulations_to_analyze_with/{cap_amt}_um_CRMU{crm_num}_U236_h1_0.out' 
        spec_238 = 
f'capping_dependence/simulations_to_analyze_with/{cap_amt}_um_CRMU{crm_num}_U238_h1_0.out' 
        sim_isotopic_df, sim_energies = upload_sim_spectrum(self.detector_response_size, spec_234, spec_235, 
spec_236, spec_238) 
             
        x, counts_in_inf = get_counts_in_regions(self.energies, self.isotopic_df['Unconvolved Spectrum'], 
self.isotopic_df['Convolved Spectrum'], self.measured_counts_df.loc[4, 'ROI Bounds'], 
self.measured_counts_df.loc[4, 'ROI Bounds']) 
        x, counts_in_236 = get_counts_in_regions(self.energies, self.isotopic_df['Unconvolved Spectrum'], 
self.isotopic_df['Convolved Spectrum'], self.measured_counts_df.loc[2, 'ROI Bounds'], 
self.measured_counts_df.loc[2, 'ROI Bounds']) 
        x, sim_counts_in_inf = get_counts_in_regions(sim_energies, sim_isotopic_df['Unconvolved Spectrum'], 
sim_isotopic_df['Convolved Spectrum'], self.measured_counts_df.loc[4, 'ROI Bounds'], 
self.measured_counts_df.loc[4, 'ROI Bounds']) 
        x, sim_counts_in_236 = get_counts_in_regions(sim_energies, sim_isotopic_df['Unconvolved Spectrum'], 
sim_isotopic_df['Convolved Spectrum'], self.measured_counts_df.loc[2, 'ROI Bounds'], 
self.measured_counts_df.loc[2, 'ROI Bounds']) 
        for num in range(5): 
            x, counts_total = get_counts_in_regions(self.energies, self.isotopic_df['Unconvolved Spectrum'], 
self.isotopic_df['Convolved Spectrum'], self.measured_counts_df.loc[num, 'ROI Bounds'], 
self.measured_counts_df.loc[num, 'ROI Bounds']) 
            print(counts_total) 
        for row_num in range(len(self.isotopic_df['Isotope'])): 
            if self.isotopic_df.loc[row_num, 'Isotope'] == 'U235': 
                num_sim_235_cts_in_inf = ufloat(sim_counts_in_inf[row_num], np.sqrt(sim_counts_in_inf[row_num])) 
                num_sim_235_cts_in_236 = ufloat(sim_counts_in_236[row_num], 
np.sqrt(sim_counts_in_236[row_num])) 
         
        # The ratio of the simulated counts of U235 in the regions is equal to the ratio of the "experimental" counts 
of U235 in the regions 
         
        num_exp_235_cts_in_236 = num_sim_235_cts_in_236 * ufloat(sum(counts_in_inf), 
np.sqrt(sum(counts_in_inf))) / num_sim_235_cts_in_inf 
         
        self.measured_counts_df.loc[2, 'Total Counts'] = self.measured_counts_df.loc[2, 'Counts in ROI'] - 
num_exp_235_cts_in_236 
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        self.measured_counts_df.loc[1, 'Total Counts'] = self.measured_counts_df.loc[1, 'Counts in ROI'] - 
self.measured_counts_df.loc[2, 'Total Counts'] 
         
         
         
    def determine_mass_ratios(self): 
         
        # The required steps for this function are: 
            # Hijack the simulated activity percentages and replace them with what was "experimentally" 
determined 
            # Call the function to convert these percentages to mass percentages 
            # Convert these mass percentages to mass ratios 
         
        half_lives = [] 
        atomic_masses = [] 
        for isotope_name in self.measured_counts_df['Isotope']: 
            if isotope_name == 'U235inf': continue 
            half_life = self.half_life_dict[isotope_name] 
            atomic_mass = self.mass_dict[isotope_name] 
             
            half_lives.append(half_life) 
            atomic_masses.append(atomic_mass) 
         
        for row_num in range(len(self.isotopic_df['Isotope'])): 
            for row_num2 in range(len(self.measured_counts_df['Isotope'])): 
                if self.isotopic_df.loc[row_num, 'Isotope'] == self.measured_counts_df.loc[row_num2, 'Isotope']: 
                    self.isotopic_df.loc[row_num, 'Activity %'] = self.measured_counts_df.loc[row_num2, 'Total Counts'] 
         
        self.update_table_by_activity(read_table = False) 
         
        for row_num in range(len(self.isotopic_df['Isotope'])): 
            for row_num2 in range(len(self.measured_counts_df['Isotope'])): 
                if self.isotopic_df.loc[row_num, 'Isotope'] == self.measured_counts_df.loc[row_num2, 'Isotope']: 
                    self.measured_counts_df.loc[row_num2, 'Mass Percent'] = self.isotopic_df.loc[row_num, 'Mass %'] 
                    #raw_text = self.isotopic_composition_table.item(row_num, 3).text().replace('%', '') 
                    #self.measured_counts_df.loc[row_num2, 'Mass Percent'] = ufloat_fromstr(raw_text) 
         
        denominator = ['U234', 0] 
         
        print(f'The chosen denominator is {denominator[0]}.') 
        for row_num in range(len(self.measured_counts_df['Isotope'][:-1])): 
            print(f'The mass ratio {self.measured_counts_df.loc[row_num, 
"Isotope"]}/{self.measured_counts_df.loc[denominator[1], "Isotope"]} ' + \ 
                  f'is equal to {self.measured_counts_df.loc[row_num, "Mass 
Percent"]/self.measured_counts_df.loc[denominator[1], "Mass Percent"]}') 
                     
        #self.isotopic_df['Mass %'] = [float(self.isotopic_composition_table.item(row_num, 3).text().replace('%', 
'')) for row_num in range(len(self.isotopic_df['Isotope']))] 
         
         
         
    def save_results(self): 
        denominator = ['U234', 0] 
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        df = pd.read_csv('capping_dependence.csv', dtype = object) 
        df_row_num = 0 
         
        df.loc[df_row_num, 'U234 Mass'] = self.measured_counts_df.loc[0, 'Mass Percent'] 
        df.loc[df_row_num, 'U235 Mass'] = self.measured_counts_df.loc[1, 'Mass Percent'] 
        df.loc[df_row_num, 'U236 Mass'] = self.measured_counts_df.loc[2, 'Mass Percent'] 
        df.loc[df_row_num, 'U238 Mass'] = self.measured_counts_df.loc[3, 'Mass Percent'] 
        df.loc[df_row_num, 'U234 Ratio'] = df.loc[df_row_num, 'U234 Mass'] / df.loc[df_row_num, 
f'{denominator[0]} Mass'] 
        df.loc[df_row_num, 'U235 Ratio'] = df.loc[df_row_num, 'U235 Mass'] / df.loc[df_row_num, 
f'{denominator[0]} Mass'] 
        df.loc[df_row_num, 'U236 Ratio'] = df.loc[df_row_num, 'U236 Mass'] / df.loc[df_row_num, 
f'{denominator[0]} Mass'] 
        df.loc[df_row_num, 'U238 Ratio'] = df.loc[df_row_num, 'U238 Mass'] / df.loc[df_row_num, 
f'{denominator[0]} Mass'] 
         
        df.to_csv(‘capping_dependence.csv', index = False) 
         
     
     
    def savefig_graph(self): 
        self.graph.axes.get_legend().set_visible(False) 
        self.graph.canvas.figure.savefig('output.png') 
        self.graph.axes.get_legend().set_visible(True) 
         
         
         
         
app = QtWidgets.QApplication(sys.argv) 
window = Ui() 
app.exec_() 

 
B.2. util.py 

import pandas as pd 
import numpy as np 
import math 
from uncertainties import ufloat 
 
 
 
def read_two_col_text_file(text_lines, return_components = False): 
    energies = [] 
    counts = [] 
    plottable = [] 
     
    for line in text_lines: 
        energy = line.split('\t')[0] 
        count = line.split('\t')[1] 
         
        energies.append(float(energy)) 
        counts.append(float(count)) 
     
    energies = np.array(energies) 
    counts = np.array(counts) 
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    plottable = np.array([energies, counts]) 
         
    if return_components: return plottable, energies, counts 
    else: return plottable 
 
 
 
def create_gaussian_output(amplitude, center, sigma, inputs): 
    gaussianOutput = amplitude*np.exp((-1*(inputs-center)**2)/(2*(sigma**2))) 
    return gaussianOutput 
 
 
 
def create_isotopic_data_frame(): 
    preliminary_dict = {'Isotope': [], 
                        'Maximum Counts': [], 
                        'Time Taken for Maximum Counts (in seconds)': [], 
                        'Measured Counts': [], 
                        'Total Atoms': [], 
                        'Activity %': [], 
                        'Activity (Bq)': [], 
                        'Mass %': [], 
                        'Mass (pg)': [], 
                        'Percentage Counts Measured': [], 
                        'Raw Spectrum': [], 
                        'Unconvolved Spectrum': [], 
                        'Convolved Spectrum': [], 
                        'Plotting Color': [],      
                        } 
     
    isotopic_df = pd.DataFrame(data = preliminary_dict, dtype = object) 
     
    return isotopic_df 
 
 
 
def get_counts_in_region(lower_bound, upper_bound, spectrum, energies): 
    energies_yint = energies[0] 
    energies_slope = energies[1] - energies[0] 
     
    energy_lower_idx = max(math.floor((lower_bound - energies_yint) / energies_slope), 0) 
    energy_upper_idx = min(math.ceil((upper_bound - energies_yint) / energies_slope), len(spectrum)-1) 
     
    num_counts_in_region = sum(spectrum[energy_lower_idx : energy_upper_idx+1]) 
    return num_counts_in_region 
 
 
 
def get_counts_in_regions(energies, unconvolved_spectra, convolved_spectra, 
energy_region_unconvolved_bounds, energy_region_convolved_bounds): 
    """ 
 
    Parameters 
    ---------- 
    energies : array 
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        A list of the energies at which the specta are relevant. 
    unconvolved_spectra : dataframe row of arrays 
        A column of a data frame containing several unconvolved spectra at the energies in energies. 
    convolved_spectra : dataframe row of arrays 
        A column of a data frame containing several convolved spectra at the energies in energies. 
    energy_region_unconvolved_min : float 
        The lower energy of the unconvolved energy region in question. 
    energy_region_unconvolved_max : float 
        The upper energy of the unconvolved energy region in question. 
    energy_region_convolved_min : float 
        The lower energy of the convolved energy region in question. 
    energy_region_convolved_max : float 
        The upper energy of the convolved energy region in question. 
 
    Returns 
    ------- 
    The counts in the convolved and unconvolved energy regions by isotope. 
 
    """ 
     
    # Find yint and slope of energies array 
    energies_yint = energies[0] 
    energies_slope = energies[1] - energies[0] 
     
    # Define bounds explicitly 
    energy_region_unconvolved_min = energy_region_unconvolved_bounds[0] 
    energy_region_unconvolved_max = energy_region_unconvolved_bounds[1] 
    energy_region_convolved_min = energy_region_convolved_bounds[0] 
    energy_region_convolved_max = energy_region_convolved_bounds[1] 
     
    # Find location in energies array that correspond to desired energy limits 
    energy_unconvolved_lower_idx = math.floor((energy_region_unconvolved_min - energies_yint) / 
energies_slope) 
    energy_unconvolved_upper_idx = math.ceil((energy_region_unconvolved_max - energies_yint) / 
energies_slope) 
    energy_convolved_lower_idx = math.floor((energy_region_convolved_min - energies_yint) / energies_slope) 
    energy_convolved_upper_idx = math.ceil((energy_region_convolved_max - energies_yint) / energies_slope) 
     
    # Integrate output spectra from Geant in these regions to get counts in these regions by isotope 
    num_counts_unconvolved = np.zeros_like(unconvolved_spectra) 
    for spectrum_idx, spectrum in enumerate(unconvolved_spectra): 
        num_counts_unconvolved[spectrum_idx] = 
sum(spectrum[energy_unconvolved_lower_idx:energy_unconvolved_upper_idx+1]) 
     
    num_counts_convolved = np.zeros_like(convolved_spectra) 
    for spectrum_idx, spectrum in enumerate(convolved_spectra): 
        num_counts_convolved[spectrum_idx] = 
sum(spectrum[energy_convolved_lower_idx:energy_convolved_upper_idx+1]) 
     
    return num_counts_unconvolved, num_counts_convolved 
 
 
 
def get_mass_from_activity(activity_percents, total_activity, maximum_counts, half_lives, atomic_masses): 
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    # Normalize the activity percentages to sum to 100 
    activity_percents /= sum(activity_percents) 
     
    # Determine the activity of each isotope in the sample as percentage of total activity times total activity 
    abs_activity = activity_percents * total_activity 
     
    # Calculate the total amount of time required for each isotope to reach the maximum number of counts and 
set the length of measurement to the shortest of these 
    time_for_max_counts = maximum_counts / abs_activity 
    actual_time = min(time_for_max_counts) 
     
    # Determine the number of counts that will occur during this measurement length for each isotope 
    measured_counts = actual_time * abs_activity 
     
    # Determine the total number of atoms of each isotope present in the source 
    total_atoms = abs_activity * half_lives / np.log(2) 
     
    # Find the total mass of each isotope in the source by value and percentage of the full source 
    abs_mass = total_atoms * atomic_masses 
     
    total_mass = sum(abs_mass) 
     
    mass_percents = abs_mass / total_mass 
     
    return abs_activity, time_for_max_counts, actual_time, measured_counts, total_atoms, abs_mass, total_mass, 
mass_percents 
 
 
 
def get_activity_from_mass(mass_percents, total_mass, maximum_counts, half_lives, atomic_masses): 
     
    # Normalize the mass percentages to sum to 100 
    mass_percents /= sum(mass_percents) 
     
    # Determine the mass of each isotope in the sample as percentage of total mass times total mass 
    abs_mass = mass_percents * total_mass 
     
    # Calculate the total number of atoms of each isotope present in the source 
    total_atoms = abs_mass / atomic_masses 
     
    # Determine the activity of each isotope in the sample from the number of atoms and the half life of each 
isotope 
    abs_activity = total_atoms * np.log(2) / half_lives 
     
    # Find the total activity of the source and the percentage of the activity from each isotope 
    total_activity = sum(abs_activity) 
    activity_percents = abs_activity / total_activity 
     
    # Calculate the total amount of time required for each isotope to reach the maximum number of counts and 
set the length of measurement to the shortest of these 
    time_for_max_counts = maximum_counts / abs_activity 
    actual_time = min(time_for_max_counts) 
     
    # Determine the number of counts that will occur during this measurement length for each isotope 
    measured_counts = actual_time.nominal_value * abs_activity.apply(lambda x: x.nominal_value) 
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    return abs_mass, total_atoms, abs_activity, total_activity, activity_percents, time_for_max_counts, 
actual_time, measured_counts 
 
 
 
def get_isotopic_information_tables(decay_modes = ['A']): 
     
    with open('nuclides.txt', 'r') as f: 
        lines = f.readlines() 
     
    half_life_dict = {} 
    mass_dict = {} 
    u = 1.66054 * (10 ** (-27)) 
    eV_mass = 1.78266192 * (10 ** (-36)) 
     
    for idx, line in enumerate(lines[1:]): 
        a_val = int(line[:4].strip()) 
        element_name = line[4:12].strip() 
        z_val = int(line[12:16].strip()) 
        n_val = int(line[16:20].strip()) 
        energy = line[20:29].strip() 
        spin_val = line[29:44].strip() 
        mass_excess = float(line[44:65].strip()) 
        mass_excess_unc = float(line[65:76].strip()) 
        half_life_text = line[76:102].strip() 
        half_life = float(line[102:128].strip()) 
        abundance = line[128:139].strip() 
        abundance_unc = line[139:148].strip() 
        decay_mode = line[148:157].strip() 
        branching_ratio = line[157:].strip() 
         
        isotope_name = element_name + str(a_val) 
        mass_excess_with_unc = ufloat(mass_excess, mass_excess_unc) 
        atomic_mass = a_val * u + (mass_excess_with_unc * 1000000 * eV_mass) 
         
        if decay_mode in decay_modes: 
            half_life_dict[isotope_name] = half_life 
            mass_dict[isotope_name] = atomic_mass 
             
    return half_life_dict, mass_dict 
 
def upload_sim_spectrum(detector_response_size, spec_234, spec_235, spec_236, spec_238): 
    isotopic_df = create_isotopic_data_frame() 
    energies = [] 
    for spectrum_number, event in zip([0, 1, 2, 3], [spec_234, spec_235, spec_236, spec_238]): 
        with open(event, 'r') as file: 
            file_text = file.readlines() 
     
        # Parse the text by line, looking for keywords describing the spectrum 
        for line_num, line in enumerate(file_text): 
            if line[0] == '#': 
                # Found a keyword 
                var_name = line.split('\t')[0].split('#')[1] 
                var_value = line.split('\t')[1].split('\n')[0] 
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                if var_name.split(' ')[0] == 'E_l': 
                    # Read in spectrum file 
                    spectrum = read_two_col_text_file(file_text[line_num+1:]) 
                    spectrum = [spectrum[0][1:], spectrum[1][1:]] 
                     
                    if len(energies) != 0: 
                         
                        # Check to make sure new energy array is aligned with old energy array 
                        new_intercept, old_intercept, energy_step_size = check_if_valid_binning(energies, spectrum) 
                         
                        # Pad end of spectrum with zeroes 
                        highest_old_energy = spectrum[0][-1] 
                        padding_index = np.arange(1,75) 
                        new_energies = spectrum[0] 
                        new_energies_padded = np.append(new_energies, 
highest_old_energy+(padding_index*energy_step_size)) 
                         
                        # Create new energies array for all of the spectra together 
                        spectrum, energies = pad_spectra(energy_step_size, isotopic_df, spectrum, new_intercept, 
old_intercept, new_energies_padded[-1], energies[-1]) 
                     
                    else: 
                         
                        energy_step_size = spectrum[0][1] - spectrum[0][0] 
                        padding_index = np.arange(1, 75) 
                        highest_old_energy = spectrum[0][-1] 
                        energies = np.append(spectrum[0], highest_old_energy + (padding_index * energy_step_size)) 
             
                elif var_name == 'partle': 
                    isotope_name = var_value 
             
                elif var_name == 'n_done': 
                    num_max_counts = int(float(var_value)) 
     
        # Create new row for data frame and append to the full isotopic data frame 
        new_row = pd.DataFrame(data = {'Isotope': isotope_name, 'Maximum Counts': num_max_counts, 'Time 
Taken for Maximum Counts (in seconds)': 0., 'Measured Counts': num_max_counts, 'Total Atoms': 0., 'Activity 
%': 0., 'Activity (Bq)': 0., \ 
                                       'Mass (pg)': 0., 'Mass %': 0., 'Percentage Counts Measured': 1, 'Raw Spectrum': 
[np.append(spectrum[1], np.zeros(74))], 'Unconvolved Spectrum': [[]], 'Convolved Spectrum': [[]], \ 
                                       'Plotting Color': 'orange'}, index = [len(isotopic_df['Isotope'])], dtype = object) 
        isotopic_df = pd.concat([isotopic_df, new_row]) 
         
    isotopic_df['Unconvolved Spectrum'] = isotopic_df['Raw Spectrum'] 
    total_raw_spectrum = sum(isotopic_df['Unconvolved Spectrum']) 
    gaussian_inputs = np.arange(0, (len(total_raw_spectrum)-1)*energy_step_size, energy_step_size) - 
((len(total_raw_spectrum)-1)/2)*energy_step_size 
 
    # Define parameters for outputs and create outputs for the Gaussian response curve 
    sigma = detector_response_size/2.355 
    amplitude = 1./(sigma*np.sqrt(2*np.pi)) 
    center = 0 
    gaussian_func = create_gaussian_output(amplitude, center, sigma, gaussian_inputs) * energy_step_size 
 
    # Convolve and plot convolved spectrum 
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    convolved_spectra = [] 
    for spectrum_number in range(len(isotopic_df['Isotope'])): 
        convolved_spectrum = np.convolve(isotopic_df.loc[spectrum_number, 'Unconvolved Spectrum'], 
gaussian_func, mode = 'same') 
        convolved_spectra.append(convolved_spectrum) 
    isotopic_df['Convolved Spectrum'] = convolved_spectra 
 
    convolved_spectrum = sum(isotopic_df['Convolved Spectrum']) 
     
    return isotopic_df, energies 
     
     
 
def check_if_valid_binning(energies, spectrum): 
     
    new_slope = round(spectrum[0][1] - spectrum[0][0], 10) 
    old_slope = round(energies[1] - energies[0], 10) 
     
    if new_slope != old_slope: 
        raise Exception(f'The bin width of this spectrum is not the same as that of the other spectra. The bin width 
of this spectrum was {new_slope} and the bin width of the other spectra is {old_slope}.') 
        return 0 
     
    energy_step_size = new_slope 
     
    new_intercept = spectrum[0][0] 
    old_intercept = energies[0] 
     
    slope_differences = round(abs(new_intercept - old_intercept), 10) % energy_step_size # Determines if the 
intercepts are separated by an integer multiple of the slope 
 
    if slope_differences > 0.0000001 and abs(slope_differences - energy_step_size) > 0.0000001: 
        # The energy bins are not compatible; please input a new spectrum instead 
        raise Exception('The bins of this spectrum are offset from the other spectra by a non-integer multiple of 
the bin width and are therefore incompatible. This spectrum was not added to the plotted total. Please try a 
different spectrum.') 
        return 0 
     
    return new_intercept, old_intercept, energy_step_size 
 
def pad_spectra(energy_step_size, isotopic_df, spectrum, new_intercept, old_intercept, highest_new_energy, 
highest_old_energy): 
     
    low_energy = min(old_intercept, new_intercept) 
    high_energy = max(highest_old_energy, highest_new_energy) 
     
    if old_intercept > new_intercept: 
        num_paddings = (old_intercept - new_intercept) / energy_step_size 
        padding_index = np.zeros(round(num_paddings)) 
        for row_num in range(len(isotopic_df['Isotope'])): 
            isotopic_df.loc[row_num, 'Raw Spectrum'] = np.append(padding_index, isotopic_df.loc[row_num, 'Raw 
Spectrum']) 
             
    if new_intercept > old_intercept: 
        num_paddings = (new_intercept - old_intercept) / energy_step_size 
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        padding_index = np.zeros(round(num_paddings)) 
        spectrum[1] = np.append(padding_index, spectrum[1]) 
         
    if round(highest_new_energy, 10) > round(highest_old_energy, 10): 
        num_paddings = (highest_new_energy - highest_old_energy) / energy_step_size 
        padding_index = np.zeros(round(num_paddings)) 
        for row_num in range(len(isotopic_df['Isotope'])): 
            appended = np.append(isotopic_df.loc[row_num, 'Raw Spectrum'], padding_index) 
            isotopic_df.loc[[row_num], 'Raw Spectrum'] = pd.Series([appended], index = [row_num]) 
     
    if round(highest_old_energy, 10) > round(highest_new_energy, 10): 
        num_paddings = (highest_old_energy - highest_new_energy) / energy_step_size 
        padding_index = np.zeros(round(num_paddings)) 
        spectrum[1] = np.append(spectrum[1], padding_index) 
     
    #print(low_energy) 
    #print(high_energy) 
    #print(self.energy_step_size) 
     
    energies = np.arange(low_energy, round(round(high_energy, 10) + round(energy_step_size, 10), 10), 
energy_step_size) 
     
    return spectrum, energies 
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Appendix C 

ADDITIONAL SPECTRAL COUNT BREAKDOWNS 

C.1. 20% Enriched, 0 μm Cap 

 

C.2. 1.5% Enriched, 0 μm Cap 
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Appendix D 

SELF-CONSISTENCY TEST RESULTS 
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Appendix E 

SENSITIVITY TEST RESULTS 

E.1.        Analysis of Simulated Experimental Spectra with a 50-μm Cap Simulated 

Correction Spectrum 
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E.2.         Analysis of Simulated Experimental Spectra with a 0-μm Cap Simulated 

Correction Spectrum 
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